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“Requirements” are usually defined 
in a macroscale domain and terms.

Performance
Life
Cost
Safety

Design of Materials

Voltage
Capacity
Lattice stability
Kinetic barrier
Transport property

Design of Electrode 
Architecture
Li transport path (local)
Electrode surface area
Deformation & fatigue
Structural stability
Surface physics

Design of Electrodes 
Pairing and Lithium 
Transport
Electrodes selection
Li transport
Porosity, tortuosity
Layer thicknesses 
Load conditions

Design of Electron 
Current & Heat 
Transport

Electric & thermal 
connections
Dimensions, form factor
Component shapes

Requirements & Resolutions 

Multi-Scale Physics in Li-Ion Battery
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a) Quantum mechanical and molecular dynamic modeling
b) Numerical modeling for addressing the impacts of the architecture of 

electrode materials
c) 1D performance model capturing solid-state and electrolyte diffusion 

dynamics
d) Cell-dimension 3D model for evaluating macroscopic design factors

[m]

a) b) c) d)

The Need for a Multi-Scale Model
Numerical approaches focusing on different length scale physics
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Why Macro-scale Transport Becomes Critical

Sub-electrode scale physics
Kinetics
Li diffusion
Ion transport
Heat dissipation

Spatial variation of …

• Electric potentials
• Temperatures

Design of current and 
heat flow paths

Size Effect
Dimension

Surface Area / Volume

Spatial Difference
(gradient x distance)

Flux (gradient)         
Barrier (distance)

Dimension Increase

Spatial Imbalance
Increase
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Image source: www.dimec.unisa.it

Simulation
Domain

X

R

x

=

• Multi-scale physics from sub-micro-scale to battery-dimension-scales
• Difficulties in resolving microlayer structures in a computational grid

Macro Grid Micro Grid
(Grid for Sub-grid Model)

+

To address …

Multi-Scale Multi-Dimensional (MSMD) Modeling

Approach in the Present Study
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NOTE:
Selection of solution scheme 
for either grid system is 
independent of the other.
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Image source: www.dimec.unisa.it

Detailed 
Structure

X

R

x

≈ Cell Dimension 
Transport Model

Electrode Scale 
Submodel (1D)+

Solution Variables
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Previous Studies
AABC 08, Tampa, May 2008
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Previous Studies
AABC 08, Tampa, May 2008

“Poorly designed electron                    
and heat transport paths can 

cause excessive nonuniform use of materials, 
and then deteriorate the performance and 
shorten the life of the battery.” 

Findings:
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Previous Studies
Int’l Conf. on Advanced Li Batteries for Automotive App., ANL, Sept. 2008

Model Validation Study against Thermal Imaging Test Data 

“Heat and electron transport interacts 
with micro-scale electrochemical 
processes and determines the distribution 
of temperature and electric potential.” 

Findings:
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Current Analysis
Macro-Scale Design Evaluation

Impacts of “Aspect Ratio” of a Cylindrical Cell

“Nominal”
“Large H”“Large D”

Each cell was virtually designed to deliver 20 Ah for PHEV-10 Applications.
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Assumption for Model Simplification

Extended Foil

Extended Foil Axisymmetric
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Brief Look at What “H/D Ratio” Means 

2
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Volume = const
Identical electrodes
Same foil thicknesses

Al: 20 µm, Cu: 15 µm
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i″: current [A/m2]  
ρ: resistivity
δ: foil thickness
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10-s Power Capability Comparison

Large H

Nominal

Large D

• Large H design has almost 10% less power 
capability.
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Battery Size Factor = 78
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Analysis Macro-Scale Design Evaluation

Constant Discharge Simulation

Standard Vehicle Driving Profile Simulation  

Impacts of “Aspect Ratio” of a Cylindrical Cell
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Snapshot Comparison for H/D ratio
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Analysis Macro-Scale Design Evaluation

Constant Discharge Simulation

Standard Vehicle Driving Profile Simulation

Impacts of “Aspect Ratio” of a Cylindrical Cell
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Approach Virtual Design Evaluation

20Ah PHEV10

Vehicle Simulator
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US06 Charge-Depleting Cycle
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Summary

Nonuniform battery physics, which is more probable in large-format 
cells, can cause unexpected performance and life degradations in 
lithium-ion batteries. 

A Multi-Scale Multi-Dimensional Model was developed as a tool for 
investigating interactions between micro-scale electrochemical 
processes and macro-scale transports using a multi-scale modeling
scheme. 

The developed model is used to provide a better understanding and 
help answer engineering questions about improving the design, 
operational strategy, management, and safety of cells.

Engineering questions to be addressed in future work include …
What is the optimum form-factor and size of a cell?
Where are good locations for tabs or current collectors?
How different are measured parameters from their nonmeasurable internal values? 
Where is the effective place for cooling? What should the heat-rejection rate be?
How does the design of thermal and electrical paths impact under-current-related 
safety events, such as internal/external shorts and overcharge? 
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