

Multi-Scale Multi-Dimensional Li-ion Battery Model for Better Design and Management

PRiME 2008, 214th Electrochemical Society Pacific Rim Meeting Honolulu, HI • October 12–17, 2008

Sponsored by Electrochemical Society

Gi-Heon Kim* and Kandler Smith National Renewable Energy Laboratory

*gi_heon_kim@nrel.gov • NREL/PR-540-44350

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Multi-Scale Physics in Li-Ion Battery

The Need for a Multi-Scale Model

Numerical approaches focusing on different length scale physics

- a) Quantum mechanical and molecular dynamic modeling
- b) Numerical modeling for addressing the impacts of the architecture of electrode materials
- c) 1D performance model capturing solid-state and electrolyte diffusion dynamics
- d) Cell-dimension 3D model for evaluating macroscopic design factors

Why Macro-scale Transport Becomes Critical

Sub-electrode scale physics <i>Kinetics</i>		Spatial variation of
<i>Li diffusion Ion transport Heat dissipation</i>	Design of current and heat flow paths	Electric potentialsTemperatures

Size Effect

Approach in the Present Study

Multi-Scale Multi-Dimensional (MSMD) Modeling

To address ...

- Multi-scale physics from sub-micro-scale to battery-dimension-scales
- Difficulties in resolving microlayer structures in a computational grid

Solution Variables

AABC 08, Tampa, May 2008

AABC 08, Tampa, May 2008

AABC 08, Tampa, May 2008

Findings:

"Poorly designed electron and heat transport paths can

cause excessive nonuniform use of materials, and then deteriorate the performance and shorten the life of the battery. "

AABC 08, Tampa, May 2008

Int'l Conf. on Advanced Li Batteries for Automotive App., ANL, Sept. 2008

Model Validation Study against Thermal Imaging Test Data

Findings:

"Heat and electron transport interacts with micro-scale electrochemical processes and determines the distribution of temperature and electric potential."

Int'l Conf. on Advanced Li Batteries for Automotive App., ANL, Sept. 2008

Model Validation Study against Thermal Imaging Test Data

Findings:

"Heat and electron transport interacts with micro-scale electrochemical processes and determines the distribution of temperature and electric potential."

Int'l Conf. on Advanced Li Batteries for Automotive App., ANL, Sept. 2008

Model Validation Study against Thermal Imaging Test Data

Findings:

"Heat and electron transport interacts with micro-scale electrochemical processes and determines the distribution of temperature and electric potential."

Int'l Conf. on Advanced Li Batteries for Automotive App., ANL, Sept. 2008

Model Validation Study against Thermal Imaging Test Data

Current Analysis

Macro-Scale Design Evaluation

Impacts of "Aspect Ratio" of a Cylindrical Cell

Each cell was virtually designed to deliver 20 Ah for PHEV-10 Applications.

Assumption for Model Simplification

Brief Look at What "H/D Ratio" Means

Volume = const Identical electrodes H x W = const Same foil thicknesses

Al: 20 μm, Cu: 15 μm

Brief Look at What "H/D Ratio" Means

10-s Power Capability Comparison

Analysis Macro-Scale Design Evaluation

Impacts of "Aspect Ratio" of a Cylindrical Cell

Constant Discharge Simulation

Standard Vehicle Driving Profile Simulation

5C Discharge

Temperature, T-T_{avq}

Reaction Current, (i-i_{avg})/i_{avg} [%]

Working Potential

Snapshot Comparison for H/D ratio

Analysis Macro-Scale Design Evaluation

Impacts of "Aspect Ratio" of a Cylindrical Cell

Constant Discharge Simulation

Standard Vehicle Driving Profile Simulation

Approach Virtual Design Evaluation

US06 Charge-Depleting Cycle

Large H cell has greatest temperature rise because long electronic current paths result in high foil heating.

Large H cell has greatest internal temperature imbalance.

Instant Temperature Imbalance

Material Usage Imbalance

Summary

Nonuniform battery physics, which is more probable in large-format cells, can cause unexpected performance and life degradations in lithium-ion batteries.

- A Multi-Scale Multi-Dimensional Model was developed as a tool for investigating interactions between micro-scale electrochemical processes and macro-scale transports using a multi-scale modeling scheme.
- The developed model is used to provide a better understanding and help answer engineering questions about improving *the design*, *operational strategy*, *management*, and *safety* of cells.

Engineering questions to be addressed in *future work* include What is the optimum form-factor and size of a cell? Where are good locations for tabs or current collectors? How different are measured parameters from their nonmeasurable internal values? Where is the effective place for cooling? What should the heat-rejection rate be? How does the design of thermal and electrical paths impact under-current-related safety events, such as internal/external shorts and overcharge?

Vehicle Technology Program at DOE

- Dave Howell
- Tien Duong

NREL Energy Storage Task

Ahmad Pesaran