INVESTIGATION OF JUNCTION PROPERTIES OF CdS/CdTe SOLAR CELLS AND THEIR CORRELATION TO DEVICE PROPERTIES

R.G. Dhere, Y. Zhang, M.J. Romero, S.E. Asher, M. Young, B. To, R. Noufi and T.A. Gessert.

Acknowledgements- K. Ramanathan, T. Coutts. DOE contract # DE-AC36-99GO10337

NREL/PR-520-43286
Presented at the 33rd IEEE Photovoltaic Specialist Conference held May 11-16, 2008 in San Diego, California
Objective - Junction Studies

• Understand the nature of the junction in the CdTe/CdS device
• Correlate the device fabrication parameters to the junction formation
• Develop a self consistent device model to explain the device properties

Detailed analysis of CdS/CdTe and SnO$_2$/CdTe devices prepared using CSS CdTe.
Glass
SnO₂
Buffer layer
CdS-
CBD
CdS/CdTe Interface
CdTe
Contact - doped graphite, Cu/Au
CdTe
CdS/CdTe Interface
CdS- CBD
Buffer layer
SnO₂
Glass

CdTe Device Structure

National Renewable Energy Laboratory
n+-p device model for CdS/CdTe device (6/95)-based on blue QE loss:

- One sided junction with depletion width entirely in CdTe.
- Only field assisted collection.
Problems with the n⁺-p model

• Phenomenological Model – can explain the device performance but without physical basis.

• CBD CdS has carrier concentration around 10^{13}/cm3 which is even less than CdTe

Here we present our interface/junction analysis using Secondary Ion Mass Spectrometry (SIMS), Modulated reflectance techniques and Electron Beam Induced Current (EBIC) to elucidate the junction properties.
SIMS Results

- Roughness of the samples (RMS – 0.5 μm) makes it impossible to resolve the features at CdS/CdTe interface.
- NREL SIMS and Microscopy groups developed sample preparation with polishing to improve the interface resolution.
Observations

- Interdiffusion at CdS/CdTe interface increases with T_{sub} and CdCl$_2$ HT
- Accumulation of Cl at CdS/CdTe interface after CdCl$_2$ HT. Level of Cl increases with level of HT
- Cl is a n-type dopant in both CdS and CdTe; also in the intermixed alloy
Photo- or Electro-Modulated Reflectance (PR or ER)

CdTe/CdS Solar Cell

Modulated Laser

DC Light

Detector

$\Delta R/R$

AC voltage
Reflectance modulation

\[R = \left| \frac{n - n_a}{n + n_a} \right| \]

\[n^2 = \varepsilon_1 + i \varepsilon_2, \quad n_a^2 = \varepsilon_a \text{ (real)} \]

Near band-gap \(\Rightarrow \) major contribution is from \(\Delta \varepsilon_1 \):

\[\frac{\Delta R}{R} \approx \alpha \Delta \varepsilon_1 \]
Fitting Modulation Reflectance Spectrum

\[\Delta \varepsilon_1 = \frac{2e^2 \hbar^2}{m^2 (\hbar \omega)^2} \left| \vec{e} \cdot \vec{P}_{cv} \right|^2 \left(\frac{2\mu_0}{\hbar^2} \right)^{3/2} \sqrt{\hbar \Omega_0} \left(G \left(\frac{E_g - \hbar \omega}{\hbar \Omega_0} \right) - \sqrt{\frac{E_g - \hbar \omega}{\hbar \Omega_0}} F \left(\frac{E_g - \hbar \omega}{\hbar \Omega_0} \right) \right) \]

\[F(\eta) = \pi [A_i^2(\eta) - \eta A_i^2(\eta)] \]

\[G(\eta) = \pi [A_i'(\eta)B_i'(\eta) - \eta A_i(\eta)B_i(\eta)] \]

Photo-reflectance

From Data fitting:
\[E_{\text{max}} = 31.9 \text{ kV/cm} \]
\[E_g = 1.448 \text{ eV} \]
From Data fitting:

$E_{\text{max}} = 34.6 \text{ kV/cm}$

$E_g = 1.4482 \text{ eV}$

CdTe-A1
300 K 100 mV P-P

$E_g = 1.4482 \text{ eV}$

$F = 34.6 \text{ kV/cm}$
Effect of CdCl$_2$ treatment (by PR)

![Graph showing the effect of CdCl$_2$ treatment on CdTe materials.](image-url)

- **CdTe, as deposited**
- **CdTe, CdCl treated**

Energy (eV)

- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- 1.7

Wavelength (nm)

- 750
- 800
- 850
- 900
- 950
- 1000

$\Delta R/R \times 10^6$

- 0
- 1
- 2
- 3
- 4
- 5
- 6

1.505 eV for CdTe 300 K 532nm
Modulated Reflectance

- Modulated electro-reflectance and photo-reflectance studies identify a region of high electric field (~32-35 kV/cm) for high efficiency CdS/CdTe devices. The field is present in the region of 1.45 eV material.
- SnO$_2$/CdTe devices do not show high field region

The high field region corresponds to Te-rich CdSTe alloy.
CdTe\(_{1-x}\) S\(_x\) alloy Bandgaps

Optical Bandgap, eV

Composition Parameter, x

Zinc-blende

Wurtzite

D. Albin, et al.
Ohata, et al.,
From $E_{\text{max}} = 32 \text{ kV}$ and depletion width on p-side = 3 μm (base on C-V and EBIC results)

Using $E_{\text{max}} = qN_A X_p / \varepsilon_s$
Gives $N_A = 5.5 \times 10^{14} \text{ cm}^{-3}$

Evaluation of N_D based on SIMS and EBIC results
EBIC

- SEM and HR-EBIC measurements performed on high V_{oc} (835 mV) device.
- Measurements on the cross-section of the device. Shows EBIC response close to CdS/CdTe interface.
substrate
SnO$_2$
Cds
CdTe

e-h
R_e
e-beam

picoamp
Electron-beam-induced-current

HREBIC

200 nm

CdS
CdTe
SnO₂
Device model

SnO$_2$ CdTe

SnO$_2$ CdS CdS$_x$Te$_{1-x}$ CdTe

Hetero Quasi-homo

V_{oc}, mV

600 750 n-p

850 890 n$^+$-p
<table>
<thead>
<tr>
<th>Device structure</th>
<th>V_{oc}, mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO$_2$/CdTe</td>
<td>600-650</td>
</tr>
<tr>
<td>CdS/CdTe as dep</td>
<td>720-750</td>
</tr>
<tr>
<td>CdS/CdTe w/ CdCl$_2$</td>
<td>840-850</td>
</tr>
</tbody>
</table>

- Lower V_{oc} devices are true hetero-junctions, whereas the devices with CdCl$_2$ treatment have a junction between n$^+$ Te-rich CdSTe alloy (doped with Cl) and p-type CdTe with compatible cubic structure i.e. quasi-homojunction.

- A true hetero-junction CdS/CdTe device performance will be dominated by interface defects at the hetero-interface which will be within the depletion region. This may be the case for as deposited devices fabricated at lower temperatures and SnO$_2$/CdTe devices giving low Voc.

- Role of CdS is mainly to produce Te rich alloy layer that gets doped to n-type during CdCl$_2$ process and passivation of the surface.