2008 Solar Annual Review Meeting

M&C PDIL Integrated and Stand-Alone Tools

Session: PDIL / Measurements & Characterization Capabilities

Organization: NREL

Peter Sheldon
Measurements and Characterization
NREL
1617 Cole Blvd.
Golden, CO 80401

NREL/PR-520-43197
Presented at the Solar Energy Technologies Program (SETP) Annual Program Review Meeting held April 22-24, 2008 in Austin, Texas
Summary of Technologies Supported (by tool):

- a-Si
- c-Si
- CdTe
- CIGS
- III-V
- OPV
- TCO
- Reliability
M&C PDIL Tool Selection

Characterization Tools:
- Surface Morphology Characterization
 SEM, AFM, SE, Reflectometer
- Structural Characterization
 EBSD
- Chemical/Compositional Characterization
 AES, XPS, EDS
- Electro-Optical Characterization
 RC-PCD, CL, EBIC, PL/IR Imaging

Processing Tools:
- Surface Preparation/Modification
 Wet Chemistry, Thermal Anneal, Plasma or Sputter Etching
- Compositional/Structural Property Modification
 Thermal Anneal
- Diffusion Barrier or Surface Passivation Layer
 PECVD, Sputter Deposited Films
M&C PDIL Tool Summary

Integrated Tools

<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Tool Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHV Robot</td>
<td>Wet Chemistry Workstation</td>
</tr>
<tr>
<td>G. Teeter</td>
<td>B. Sopori</td>
</tr>
<tr>
<td>Auger System</td>
<td>Semilab Tool</td>
</tr>
<tr>
<td>G. Teeter</td>
<td>S. Johnston</td>
</tr>
<tr>
<td>RCPCD Tool</td>
<td>Optical Processing Furnace</td>
</tr>
<tr>
<td>S. Johnston</td>
<td>B. Sopori</td>
</tr>
<tr>
<td>PL Imaging Tool</td>
<td>Reflectometer</td>
</tr>
<tr>
<td>S. Johnston</td>
<td>B. Sopori</td>
</tr>
<tr>
<td>Spectroscopic Ellipsometry</td>
<td>Atomic Force Microscopy System</td>
</tr>
<tr>
<td>S. Choi</td>
<td>H. Moutinho</td>
</tr>
<tr>
<td>PECVD Tool</td>
<td>Scanning Electron Microscopy System</td>
</tr>
<tr>
<td>S. Asher</td>
<td>M. Romero</td>
</tr>
<tr>
<td>Sputter/Plasma Etch Tool</td>
<td>X-Ray Photoelectron Spectroscopy System</td>
</tr>
<tr>
<td>S. Asher</td>
<td>J. Pankow</td>
</tr>
<tr>
<td>Open Bay for Industry Tool</td>
<td></td>
</tr>
<tr>
<td>Transfer Pod</td>
<td></td>
</tr>
</tbody>
</table>

Stand Alone Tools

Tool Description

- Wet Chemistry Workstation
 - B. Sopori
- Semilab Tool
 - S. Johnston
- Optical Processing Furnace
 - B. Sopori
- Reflectometer
 - B. Sopori
- Atomic Force Microscopy System
 - H. Moutinho
- Scanning Electron Microscopy System
 - M. Romero
- X-Ray Photoelectron Spectroscopy System
 - J. Pankow
UHV Robot: Integrated tool sample transfer “hub”

Computer controlled robotic UHV chamber for transferring NREL platens between analysis, processing, and deposition chambers.
Auger Electron Spectroscopy (AES) Tool

AES Tool Characteristics:
- Non-destructive (surface scan mode)
- Elemental surface analysis (Li to U)
- Compositional analysis (~ 0.1 atomic %)
- Very surface sensitive (~15Å)
- Energy resolution > 1 eV
- Depth-profiling capable (up to 50 nm/min)
- 2-D mapping capability (combinatorial applications)
- Full 6” × 6” sample access
- Standalone or integrated operation

Summary of Roadmap Technologies Supported:

<table>
<thead>
<tr>
<th>a-Si</th>
<th>c-Si</th>
<th>CdTe</th>
<th>CIGS</th>
<th>III-V</th>
<th>OPV</th>
<th>TCO</th>
<th>Reliability</th>
</tr>
</thead>
</table>
AES Tool
Application Example: AES mapping Cu/CdTe surface

AES Map

SEM

Auger intensity (arbitrary units)

Cu$_2$Te standard
Cu LMM
Cd MNN
Te MNN
Cd-rich
substrate

Kinetic energy (eV)

200 400 600 800 1000 1200

1 µm
Resonant Coupled Photo Conductive Decay (RC-PCD) Microwave Photo Conductive Decay (µ-PCD) Tool

- Minority-carrier lifetime spectroscopy is a contactless, nondestructive method to study the recombination processes in materials. Measures the return of photoexcited carriers back to equilibrium providing the lifetime of the excess carriers.
- Excellent technique for evaluating material quality and surface passivation
- Capable of accessing the entire 6” x 6” substrate area in a controlled environment
- Excitation source is pulsed laser with OPO (~5 ns pulse width, Wavelength tunable from 420 nm to 2300 nm)
- Stepper motor stage provides mapping capability

Summary of Roadmap Technologies Supported:

<table>
<thead>
<tr>
<th>a-Si</th>
<th>c-Si</th>
<th>CdTe</th>
<th>CIGS</th>
<th>III-V</th>
<th>OPV</th>
<th>TCO</th>
<th>Reliability</th>
</tr>
</thead>
</table>

Pulsed Laser
RC-PCD/μ-PCD Tool: Application Example

FZ-Si

\[\lambda = 1100 \text{ nm} \]

\[\tau = 23 \text{ ms} \]

CZ-Si (Unpassivated)

\[\lambda = 500 \text{ nm} - 1100 \text{ nm} \]
Photoluminescence (PL) / Infrared (IR) Imaging Tool

- PL and IR imaging are recently developed contactless techniques that provide signals proportional to the minority carrier lifetime.

Excitation source:
Fixed wavelength 60W laser diode (810 nm) illuminates the entire 6” x 6” sample area at ~1-sun intensity.

Imaging/Detection Options:
High-resolution imaging cameras (~150 µm pixel resolution) provide a rapid measurement of the lifetime over the entire 6” x 6” sample area (1-30 sec.):
- PL Imaging - Si CCD Camera detects PL signal emitted at 1100 nm
- IR Imaging - InSb IR Camera (lock-in thermography) for carrier density imaging detects emission or absorption of IR by excess carriers

- Imaging shows steady-state values proportional to lifetime and may be applicable to most materials since time resolution is not a limiting factor.

Summary of Roadmap Technologies Supported:

<table>
<thead>
<tr>
<th>a-Si</th>
<th>c-Si</th>
<th>CdTe</th>
<th>CIGS</th>
<th>III-V</th>
<th>OPV</th>
<th>TCO</th>
<th>Reliability</th>
</tr>
</thead>
</table>
PCD and Imaging Tool Comparison

Quantitative Data: *Fitted transients provide quantitative lifetime results*

Slow Data Collection: *Minutes to hours*

Lower Resolution: *1 mm/pixel*

R&D Emphasis: *Variable excitation wavelength and injection level provide valuable research information (τ vs depth and injection level dependence)*

Qualitative Data: *Intensity is proportional to lifetime, linearity suffers when S is high*

Rapid Data Collection: *Seconds*

Higher Resolution: *150 µm/pixel*

Process Diagnostic Emphasis: *In-line capability for use as process control and feedback*
Spectroscopic Ellipsometry (SE) Tool

SE Tool Characteristics:
- Non-destructive technique
- Wide spectral range (245 - 1690 nm)
- Fast data acquisition
- Temperature: RT to ~850ºC
- High Pressure to UHV capable (dose samples w/ gases such as O₂ or H₂O)
- Full sample access

SE Tool Applications:
- Thin-film thickness
- Surface/interface roughness
- Crystallinity
- Optical constants
- Alloy composition
- Electronic energy band structure information
- Real-time feedback for growth control

Summary of Roadmap Technologies Supported:

- a-Si
- c-Si
- CdTe
- CIGS
- III-V
- OPV
- TCO
- Reliability
SE Tool: Application Example - Monitoring Si Crystallinity

SE Data Modeling
Graded i-layer: nc-Si \Rightarrow a-Si

TEM Cross Section
c-Si \Rightarrow nc-Si \Rightarrow a-Si

- Surface roughness
 - EMA a-Si/nc-Si (% nc-Si)
 - EMA c-Si/void
 - c-Si substrate

Other RTSE Monitoring Applications:
CIGS, CdTe, SiN$_x$, and TCO deposition
Sputter-Plasma-Diagnostic (SPD) Tool

Flexible platform for performing controlled ambient annealing experiments and for developing improved understanding of common industrial deposition processes and scale-up issues.

- RF and DC sputter deposition sources
- Plasma source (deposition & etching)
- High resolution mass spectrometer

Applications:
- Contacting studies
- Detection of active species in sputtering or plasma enhanced deposition processes
- Compare/assess sputter targets from different manufacturers
- Compare PECVD processes

Summary of Roadmap Technologies Supported:

<table>
<thead>
<tr>
<th>a-Si</th>
<th>c-Si</th>
<th>CdTe</th>
<th>CIGS</th>
<th>III-V</th>
<th>OPV</th>
<th>TCO</th>
<th>Reliability</th>
</tr>
</thead>
</table>
Plasma Enhanced Chemical Vapor Deposition (PE-CVD) Tool

General purpose plasma enhanced chemical vapor deposition tool (remote plasma) for the deposition of high-quality oxides, nitrides, and carbides of silicon.

PE-CVD Tool Applications:
• Silicon passivation studies using $\text{Si}_x\text{N}_y\text{:H}$ and $\text{Si}_x\text{C}_y\text{:H}$
 • Optimum firing conditions for various film compositions
 • Compare/optimize for H-passivation, BSF, AR
• Deposition of moisture-barrier layers
 • Indirect plasma to minimize damage to polymer/other surface
 • Direct coating of cells and/or critical coatings for reliability studies
• Depositions for diffusion barrier layers on glass or other substrates

Summary of Roadmap Technologies Supported:

<table>
<thead>
<tr>
<th>a-Si</th>
<th>c-Si</th>
<th>CdTe</th>
<th>CIGS</th>
<th>III-V</th>
<th>OPV</th>
<th>TCO</th>
<th>Reliability</th>
</tr>
</thead>
</table>

Integrated Tools
- **UHV Robot**
 - G. Teeter
- Auger System
 - G. Teeter
- RCPCD Tool
 - S. Johnston
- PL Imaging Tool
 - S. Johnston
- Spectroscopic Ellipsometry
 - S. Choi
- PECVD Tool
 - S. Asher
- Sputter/Plasma Etch Tool
 - S. Asher
- Open Bay for Industry Tool
- Transfer Pod

Stand Alone Tools
- **Wet Chemistry Workstation**
 - B. Sopori
- Semilab Tool
 - S. Johnston
- Optical Processing Furnace
 - B. Sopori
- Reflectometer
 - B. Sopori
- Atomic Force Microscopy System
 - H. Moutinho
- Scanning Electron Microscopy System
 - M. Romero
- X-Ray Photoelectron Spectroscopy System
 - J. Pankow
Wet processing station (WPS)

General user facility for Si processing: Semi automatic, wet processing station for reproducible Si wafer preparation and etching

WPS Tool Applications:
- Wafer preparation/surface passivation for lifetime measurement
- Defect Etching
- Oxide Removal
- H-termination
- Planarization Etching

Reproducible surface preparation is critical

Technologies Supported:
- c-Si
Optical Processing Furnace (OPS)

Optical furnace for processing 6” x 6” semiconductor wafers. Furnace was designed at NREL and will be fabricated by Applied Optical Sciences Corp. under a CRADA.

OPS Tool Applications:
- Contact Formation (e.g., Alloying Al, fire-through front metallization on SiN:H)
- Hydrogen Passivation
- Thin-film Si Recrystallization
- Oxidation for Wafer Surface Preparation

Technologies Supported:

- a-Si
- c-Si
- CdTe
- CIGS
NREL developed technique that rapidly measures the reflectance spectrum over an entire 6” x 6” substrate as a function of wavelength and deconvolves the data to derive physical parameters of importance to PV cell manufacturing.

- Measures Reflectance in two modes:
 - Spectrometer mode \(R_{\text{avg}}(\lambda) \)
 - Imaging mode \(R_{\lambda} = \text{const}(x,y) \)
- Indirectly Measures:
 - AR coating thickness \((\lambda_0) \)
 - Surface roughness \((\Delta \lambda) \)
 - Wafer thickness \((R_{\text{abs. edge}}) \)
 - Metallization fraction \((R_0) \)
 - Back surface reflectance \((R_b) \)
- Data acquired in < 1 s

Summary of Roadmap Technologies Supported:

<table>
<thead>
<tr>
<th>Technology</th>
<th>a-Si</th>
<th>c-Si</th>
<th>CdTe</th>
<th>CIGS</th>
<th>III-V</th>
<th>OPV</th>
<th>TCO</th>
<th>Reliability</th>
</tr>
</thead>
</table>

Reflectometer: Applications

- **R&D process monitoring**
 - AR coating thickness (λ_0)
 - Surface roughness ($\Delta\lambda$)
 - Wafer thickness
 - Metallization area
 - Metallization height

- **Online monitoring compatible**

Spectrometer Mode

![Spectrometer Mode Diagram](image)

Imaging Mode

![Imaging Mode Diagram](image)
X-ray Photoelectron Spectroscopy (XPS) Tool

XPS Tool Characteristics:

- Quantitative evaluation of chemical bonding environment (valence state and chemical environment)
- Determination of band positions, alignments, Fermi edge, work function
- Elemental identification (Li to U)
- Compositional analysis (~0.1 atomic %)
- X-ray probe size ~10 µm
- Depth profiling capability
- Full 6” × 6” sample access
- “Face-up” analysis only

Summary of Roadmap Technologies Supported:

<table>
<thead>
<tr>
<th>a-Si</th>
<th>c-Si</th>
<th>CdTe</th>
<th>CIGS</th>
<th>III-V</th>
<th>OPV</th>
<th>TCO</th>
<th>Reliability</th>
</tr>
</thead>
</table>
XPS Tool: Sample Applications

Polymer Analysis

Polyethylene Terephthalate (PET)

2-D Chemical Mapping

Pet Carbon 1s and Oxygen 1s spectra for PET, showing synthetic fit.

Polymer Analysis

PET CARBON 1S

PET OXYGEN 1S

Photoresist

Si

Si oxide

SiOx
Summary of Roadmap Technologies Supported:

- a-Si
- c-Si
- CdTe
- CIGS
- III-V
- OPV
- TCO
- Reliability

Scanning Electron Microscope (SEM) Tool

SEM Tool Characteristics:

- Operating modes:
 - Secondary electron imaging (SE)
 - Backscattered electron imaging (BSE)
 - Cathodoluminescence (CL)
 - Electron beam induced current (EBIC)
 - Electron backscattered diffraction (EBSD)
 - Energy dispersive x-ray spectroscopy (EDS)

- Non-destructive
- Operating ambients:
 - High Vacuum: 4.5×10^{-6} Torr
 - Low Vacuum: 0.1-1 Torr
 - Environmental mode: 1-20 Torr
- Resolution:
 - 3.0 nm (SE, 30 keV)
 - 4.0 nm (BSE, 30 keV)
- Full access to 6” × 6” sample area
- PDIL compatible

Information obtained:

- Image contrast
- Photon emission - recombination centers
- Electrical activity - junction, GBs,
- Structural data - orientation and phase
- Compositional data - elemental mapping
SEM Tool: Sample Applications

SEM Operational Modes

- SE (Secondary Electrons)
- BSE (Backscattered Electrons)
- Auger
- X-Rays
- EBSD
- CL (Cathodoluminescence)
- EBIC
- STEM

Complementary Image Contrast

- SE (Secondary Electrons)
- BSE (Backscattered Electrons)

Compositional Analysis

- SE (Secondary Electrons)
- EDS (Energy Dispersive X-rays)

Optical Emission

- CL (Cathodoluminescence)
- P1 and P2
- Photon energy (eV)

Structural Analysis

- EBSD (Electron Backscatter Diffraction)
Scanning Probe Microscopy (SPM) Tool

SPM Tool Characteristics:

- Operating modes provide information on topographic and material electrical and electronic properties
- Non-destructive technique, PDIL compatible
- Can analyze materials ranging from conductors to insulators
- Excellent Spatial Resolution:
 - \(x, y < 1.80 \text{ nm} \)
 - \(z < 0.05 \text{ nm} \)
- 2 µm stage repeatability
- Operating ambients:
 - Atmospheric pressure
 - \(\text{N}_2, \text{Ar} \) or other ambients
- Full access to 6” × 6” sample area

Summary of Roadmap Technologies Supported:

<table>
<thead>
<tr>
<th>a-Si</th>
<th>c-Si</th>
<th>CdTe</th>
<th>CIGS</th>
<th>III-V</th>
<th>OPV</th>
<th>TCO</th>
<th>Reliability</th>
</tr>
</thead>
</table>

SPM Tool: Sample Applications

- Surface Imaging: topography (AFM)
- Electrical and electronic properties: surface potential (SKPM), carrier concentration (SCM), electrical conductivity (C-AFM)

\[\text{Cd}_2\text{SnO}_4 \text{ after annealing} \]

\[\text{CdTe/CdS solar cell} \]

- Topography (AFM mode) 500 nm
- Current (C-AFM mode) 1000 nA
<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Current Status</th>
<th>Estimated Installation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHV Robot</td>
<td>Final Design Complete, Tool Purchased</td>
<td>03/09</td>
</tr>
<tr>
<td>Auger (AES) System</td>
<td>Final Testing at Vendors Site</td>
<td>07/08</td>
</tr>
<tr>
<td>RC-PCD Tool</td>
<td>Preliminary Design Complete, Prototype Tested</td>
<td>03/09</td>
</tr>
<tr>
<td>PL/IR Imaging Tool</td>
<td>Preliminary Design Complete, Prototype Tested</td>
<td>03/09</td>
</tr>
<tr>
<td>Spectroscopic Ellipsometry</td>
<td>Specifications Complete</td>
<td>09/08</td>
</tr>
<tr>
<td>Sputter/Plasma Etch Tool</td>
<td>Final Design Complete, Tool Purchase Initiated</td>
<td>02/09</td>
</tr>
<tr>
<td>PECVD Tool</td>
<td>Preliminary Design Complete</td>
<td>04/09</td>
</tr>
<tr>
<td>Wet Chemistry Workstation</td>
<td>Final Design Complete, Tool Purchased</td>
<td>11/08</td>
</tr>
<tr>
<td>Semilab Tool</td>
<td>Installation Complete</td>
<td>03/08</td>
</tr>
<tr>
<td>Optical Processing Furnace</td>
<td>CRADA signed, Conceptual Design Complete</td>
<td>03/09</td>
</tr>
<tr>
<td>Reflectometer</td>
<td>CRADA Negotiated, Prototype Design Complete</td>
<td>02/09</td>
</tr>
<tr>
<td>Atomic Force Microscopy (AFM)</td>
<td>AFM Installation Complete (Glove Box & Transfer Station Installation Pending)</td>
<td>04/08</td>
</tr>
<tr>
<td>Scanning Electron Microscopy (SEM)</td>
<td>Tool Construction Near Completion</td>
<td>06/08</td>
</tr>
<tr>
<td>X-Ray Photoelectron Spectroscopy (XPS)</td>
<td>Final Design Complete, Tool Purchased</td>
<td>11/08</td>
</tr>
</tbody>
</table>