

Innovation for Our Energy Future

Renewable Energy Financing: The Role of Policy And Economics

Karlynn Cory

Strategic Energy Analysis and Applications Center, NREL

EUCI RPS Symposium Washington, DC March 27, 2008

NREL/PR-670-42918

NREL is operated by Midwest Research Institute - Battelle

Overview

- Renewable Energy (RE) Valuation
- Federal and State Incentives
- The role of RECs in financing RE

- How Policy Impacts RE Valuation

• Financing Challenges

Renewable Project Costs & Revenues

Costs

Revenues

Electric Generation – Cost Comparison

Total Overnight Costs For Projects Initiated in 2006

Source: OH OCC (2007) 4 Orig. sources: DOE, MIT, Solar Buzz, NREL

CANCEL National Renewable Energy Laboratory

Federal Incentives

- Investment Tax Credit (ITC)
 - 30% for solar and fuel cells* from 1/1/06 through 12/31/08
 - Reverts to 10% (current level for geothermal electric)
- Production Tax Credit (PTC)
 - Based on production in first 10 years of operation
 - 2.0¢/kWh for wind, geothermal, closed-loop biomass
 - 1.0¢/kWh for LFG, open-loop biomass, hydro (including small irrigation), MSW
- Modified Accelerated Cost Recovery System (MACRS)
 - Accelerated depreciation of specific equipment costs
 - Generally, ~90% of equipment costs (not including transmission)
- Every project can use MACRS, but if eligible for both PTC and ITC, the project can only claim one credit

* At least 0.5 kW fuel cell and up to \$500 per 0.5 kW

Source: DSIRE

State Incentives

- System Benefit Charge for renewables
 - 17 funds expected to total \$6.8 billion between 1998-2017
 - Programs for end-users, developers, industry
- State ITC
- State PTC
- Tax Exemptions (State, County, City)
 - Sales
 - Property
- Net metering and Interconnection
 - Not uniformly applied
 - Important for small, distributed systems

6

State Policy: Renewable Portfolio Standards

State Policy – Specific RPS Provisions Promote Solar and DG

REC Tracking Systems

REC Market Value Factors

- Compliance vs. voluntary market
- Regional Issues
 - Quality of resource
 - Incremental cost of development above energy market
 - REC supply-demand balance
- Long-term policy stability/uncertainty
- Other market rules/conditions (e.g. price cap)

	RECs	Solar RECs
Voluntary	\$1-7*/MWh	\$18-21/MWh
RPS	\$3-22/MWh	\$205-265/MWh**
RPS (shortage)	\$48-56/MWh	??? NJ SREC cap:
\$711/MWh		

Sources: Evolution Markets, NREL, Xcel, NJ Clean Energy Program * Not counting biomass ** NJ and CO only

PNREL National Renewable Energy Laboratory

High REC Prices are Great...

Investors Face Many Risks

- 1. Investment risk is reduced by...
 - A higher return on investment
 - Long-term contracts w/creditworthy entities
 - Tax incentives used to increase project cash flow
 - Risk shared with other investors
- 2. Energy resource risk is key concern
 - How much wind/water/biomass is available?
 - <u>Biomass concerns</u>: small suppliers, short-term contracts
- 3. Environmental risk (siting and permitting)
- 4. Technology risk commercial preferred, not emerging
- 5. Portfolio diversity helps reduce risk
 - Invest in several different geographic regions
 - Long-term contracts with several different off-takers

REC Value for Project Financing

- Ability for electricity revenues and incentives to cover large portion of project costs
- REC financing value can depend on:
 - Ability to secure "favorable" REC contracts/hedges
 - Perspective of investors
- Equity investors:
 - Greater appetite for risk
 - Some investing in wind projects without REC contracts,
 - Particularly if there are neighboring/other markets in which to sell RECs (RPS, voluntary)
 - Looks for disparities between REC spot market and longterm REC prices
- <u>Debt lenders:</u> generally, unwilling to lend without PPA that covers costs with creditworthy entity

Key Financing Challenges by Renewable Technology

- Wind
 - Investment returns
 - PTC expiration
 - Competing capital resulting in lower IRRs
 - Resource risk
 - O&M costs
- Solar PV
 - Upfront capital costs and resulting investment return
 - ITC expiration
- Biomass
 - Resource risk (unreliable fuel supply)
 - Environmental risks
- Geothermal
 - Resource risk (temperature decline, fouling)
 - Environmental risk (well blowouts)

Adopted from Jerry Peters, TDBanknorth

14

Conclusions

- Renewable Energy Valuation Depends on: •
 - Value of federal and state incentives
 - Resulting incremental cost above regional electricity revenues (if any)
 - Ability to secure attribute/REC revenues to cover incremental cost and desired return
 - Better for RPS eligible technologies •
 - Particularly if there is a set-aside (e.g. solar or DG)
- **REC Valuation Depends on Investors**
 - Debt lenders want REC PPAs with creditworthy entities
 - Equity investor willing to take more risk, for certain tech.
- Financing Challenges are Technology Specific •

Innovation for Our Energy Future

Thank you for your attention!

Karlynn Cory

Strategic Energy Analysis and Applications Center National Renewable Energy Laboratory <u>www.nrel.gov/analysis</u>

> 1617 Cole Blvd., MS 1533 Golden, CO 80401-3393 P: (303) 384-7464 E: Karlynn_cory@nrel.gov

