Connecticut Transit (CTTRANSIT), owned by the Connecticut Department of Transportation, provides fixed route transportation services to three major metropolitan areas in the state: Hartford, New Haven, and Stamford. CTTRANSIT is committed to improving the environment for its passengers and the communities it serves. For the past several years, it has been investigating new technologies and fuels for its fleet that are more efficient and produce fewer emissions. These include using ultra-low-sulfur diesel fuel blended with biodiesel in the current fleet, retrofitting existing buses with diesel particulate filters, purchasing hybrid electric buses, and more recently, demonstrating a prototype fuel cell bus. Fuel cell buses powered by hydrogen produce no tailpipe emissions and can help reduce U.S. dependence on imported oil.

In April 2007, CTTRANSIT unveiled its hybrid fuel cell bus—a first for the New England region. The fuel cell bus operates on the Star Shuttle route in Hartford. Hartford is the largest of the three areas. CTTRANSIT services and operates over 30 local and 23 express routes in and around the capital area. The Star Shuttle route offers free service around the downtown area, connecting hotels with the convention center and many other landmarks.

CTTRANSIT also plans to operate the bus on other routes to test the performance in a variety of transit service conditions, such as steep grades and high speeds.

The prototype fuel cell bus was developed as a collaborative effort by UTC Power, ISE Corporation, and Van Hool. The bus uses a fuel cell power system manufactured by UTC Power in a hybrid electric drive system designed by ISE. It was part of an earlier procurement of four fuel cell buses currently in operation at AC Transit and SunLine in California. Testing the bus in Connecticut will assist the project partners in understanding how the system operates in a cold, humid climate.

The U.S. Department of Transportation’s Federal Transit Administration (FTA) and the U.S. Department of Energy (DOE) are collaborating to develop, demonstrate, and evaluate fuel cell technology in transit applications. FTA is focused on fuel cell buses, while DOE is focused on light-duty fuel cell vehicles and hydrogen fueling infrastructure. DOE validates fuel cell technology in a variety of applications, including transit, with the overall goal of determining the current status of the technology and assessing the progress toward technology readiness.

THE HYBRID SYSTEM is a series configuration, meaning the powerplant is not mechanically coupled to the drive axle. The powerplant and energy storage system work together to provide electricity to two electric drive motors that are coupled to the driveline through a combining gearbox.

When the bus needs extra power, both the powerplant and energy storage system provide power to the drive motors. When the power requirements of the bus are low, the powerplant recharges the energy storage system. The hybrid system is also capable of regenerative braking, which captures the energy typically...
CTTRANSIT Operates New England’s First Fuel Cell Hybrid Bus

The fuel cell bus fills up at a hydrogen fueling station at UTC Power’s headquarters, located only a few miles from the CTTRANSIT facility. The hydrogen supplied to the station is a byproduct of brine production from Niagara Falls hydropower. The hydrogen collected is transported by pipeline to the supplier where it is purified, compressed, and liquefied for transportation to the fueling station.

CTTRANSIT is currently collaborating with the U.S. Department of Energy’s (DOE) Hydrogen, Fuel Cells & Infrastructure Technologies Program to evaluate the fuel cell bus. The agency will run the bus in revenue service for a minimum of two years. During this time, DOE’s National Renewable Energy Laboratory (NREL) will collect and analyze performance and operations data. The evaluation of the buses at CTTRANSIT is one of several DOE projects that support the research and development of highly efficient, low- or zero-emission fuel cell power systems. The results are important in understanding the state of the technology and the work that still needs to be done. Information gathered during the demonstration will help researchers assess the status of the technology and aid fleets in making informed purchase decisions. Results will be used to guide future research and development.

CTTRANSIT Fuel Cell Facts

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Chassis</td>
<td>Van Hool, A330 low-floor</td>
</tr>
<tr>
<td>Model Year</td>
<td>2006</td>
</tr>
<tr>
<td>Length/Width/Height</td>
<td>40 ft/102 in/137 in</td>
</tr>
<tr>
<td>GVWR</td>
<td>43,420 lb</td>
</tr>
<tr>
<td>Seats</td>
<td>30 seated (or 26 seated with 2 wheelchairs) and 20 standees</td>
</tr>
<tr>
<td>Wheel Base</td>
<td>228 in</td>
</tr>
<tr>
<td>Service</td>
<td>Star Shuttle downtown service initially, then all routes</td>
</tr>
<tr>
<td>Drive System</td>
<td>Siemens ELFA series hybrid system</td>
</tr>
<tr>
<td>Powerplant</td>
<td>UTC Power PureMotion* 120, PEM fuel cell power system; two stacks, 120 kW total</td>
</tr>
<tr>
<td>Propulsion Motor</td>
<td>Two AC induction motors, 170 kW total</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>ZEBRA (sodium nickel chloride), three modules, 95 kW total</td>
</tr>
<tr>
<td>Accessories</td>
<td>Electrically driven</td>
</tr>
<tr>
<td>Fuel</td>
<td>Gaseous hydrogen at 5,000 psi</td>
</tr>
<tr>
<td>Hydrogen Storage</td>
<td>Eight on-board, carbon fiber-wrapped tanks by Structural Composites Industries, approximately 50 kg total storage</td>
</tr>
<tr>
<td>Emissions Equipment</td>
<td>Zero emissions</td>
</tr>
</tbody>
</table>

* PureMotion is a registered trademark of UTC Power

Increase Your H2IQ!
Visit: www.hydrogen.energy.gov

Produced by the National Renewable Energy Laboratory (NREL)
NREL is a U.S. Department of Energy National Laboratory operated by Midwest Research Institute • Battelle
DOE/G012008-2529
February 2008
Printed with a renewable-source ink on paper containing at least 10% recycled paper, including 10% postconsumer waste.

Contacts

CTTRANSIT
Stephen Warren
Assistant General Manager, Maintenance Services
Phone: 860-522-5101 ext. 223
Email: swarren@cttransit.com

National Renewable Energy Laboratory
Leslie Eudy
Senior Project Leader
Phone: 303-275-4412
Email: leslie_eudy@nrel.gov

Web Sites
CTTRANSIT: www.cttransit.com
UTC Power: www.utcpower.com
ISE: www.isecorp.com
Van Hool: www.vanhool.com
DOE: www.hydrogen.gov
NREL: www.nrel.gov/hydrogen/proj_tech_validation.html

Increase Your H2IQ!
Visit: www.hydrogen.energy.gov

Printed with a renewable-source ink on paper containing at least 10% recycled paper, including 10% postconsumer waste.