CoolCab Truck Testing
Project Update

Ken Proc, Senior Project Leader, Fleet Test and Evaluation

21 CTP Meeting
October 31, 2007

NREL/PR-540-42396
CoolCab Project

• The Problem
 – Trucks consume 2.5 million barrels of oil per day
 – Idling consumes 838 million gallons of fuel per year
 – Future emissions requirements
 • lower fuel economy
 • increase underhood temps.

Redesigning the Heavy Truck is an opportunity to reduce oil importation
CoolCab Project

• The Challenge
 – Cab climate control requires idling to provide comfort
 – Varying thermal conditions inhibit use of idle reduction technologies
CoolCab Project

The Solution
- Design efficient thermal management systems
 - Keep the cab comfortable
 - Eliminate excessive idling
CoolCab – Advanced Technologies

- Exhaust Heat Recovery
- Insulation
- IR Reflective Materials
- Advanced Seating – Low Mass
- Advanced Glazings or Shades
- Efficient HVAC Equipment
- Comfort Based Air Distribution

NREL National Renewable Energy Laboratory
Infrared Image Test – Schneider National

- Investigate potential for improving cab efficiency
- Qualitative comparison
 - Identify high heat loss areas
 - Note areas with greatest potential for improvement
CoolCab Testing with Volvo

- Volvo Truck at NREL for testing
 - 77” sleeper cab
 - On-board idle reduction technologies
 - Bergstrom battery electric AC
 - Airtronic diesel-fired heater

- Objectives
 - Quantify truck cabin heat transfer
 - Identify potential areas for improvement
Testing Approach

- Co-heat tests to determine UA
 - Measure effect of sleeper curtain and window shades
 - Insulate windows to quantify loss
- Measure air exchange rate
- Solar soak tests to determine solar effects
 - Soak with windows insulated
- Infrared imaging to examine high heat loss areas
 - Hot spots
Volvo Test Results

• Heat transfer
 – UA = overall heat transfer coefficient = 65 W/K
 – 15% reduction (improvement) with sleeper curtain closed
 – 20% reduction with windows covered

• Solar heat soak
 – $\Delta T = $ temperature rise above ambient = 15°C
 – $\Delta T = $ 5°C with windows covered

• Air leakage rate
 – ~1 air change per hour
CoolCab Testing with International

- **International Truck at NREL**
 - ProStar sleeper cab tractor
 - Electric HVAC system with battery APU
- **Objectives**
 - Quantify truck cabin heat transfer
 - Predict HVAC system load requirements
- **Began spring 2007**
International Test Results

• Heat transfer
 – UA = overall heat transfer coefficient = 50 W/K
 – 20% reduction (improvement) with sleeper curtain closed
 – 25% reduction with arctic curtain
 – 13% reduction with windows covered

• Solar heat soak
 – $\Delta T = \text{temperature rise above ambient} = 11^\circ\text{C}$
 – $\Delta T = 7^\circ\text{C}$ with windows covered

• Air leakage rate
 – $\sim0.5 \text{ air change per hour}$
Thermal Modeling

- Previously developed model for International
 - Fluent CFD
 - Radtherm
- Validate with test data
 - Solar soak air temperatures predicted within 3°C
 - Apply multiple configurations
- Simulation runs
 - Baseline A/C case
 - Increased cab insulation
 - Solar reflective glass
Next Steps – FY08

• Begin development of HVAC load calculation tool
• Generic truck cab geometry
• Input key parameters
 – Climatic conditions
 – Vehicle geometry
 – Material properties
• Estimate potential load reduction
• Work with industry to define requirements
 – Truck OEMs
 – Idle reduction technology manufacturers
Contact Information

• Kenneth_Proc@nrel.gov
 (303) 275-4424
• http://www.nrel.gov/vehiclesandfuels/fleettest/