

FCV Learning Demonstration: First-Generation Vehicle Results and Factors Affecting Fuel Cell Degradation

Keith Wipke, Sam Sprik, Jennifer Kurtz, Holly Thomas¹ John Garbak²

> Fuel Cell Seminar, San Antonio, TX October 17, 2007

> > INREL, ²US Dept. of Energy

This presentation does not contain any proprietary or confidential information

1

NREL/PR-560-42199

Outline

- Objectives and Partners
- Methodology and Data Analysis
- How to Access Full Results
- Highlighted Results
 - Fuel Cell Efficiency and Power Points
 - FC Voltage Degradation and Factors Affecting it
 - Driving and Refueling Behaviors

Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets

- Objectives
 - Validate H₂ FC Vehicles and Infrastructure in Parallel
 - Identify Current Status and Evolution of the Technology
 - Assess Progress Toward Technology Readiness
 - Provide Feedback to H₂ Research and Development

Key Targets		
Performance Measure	2009*	2015**
Fuel Cell Stack Durability	2000 hours	5000 hours
Vehicle Range	250+ miles	300+ miles
Hydrogen Cost at Station	\$3/gge	\$2-3/gge
* To verify progress toward 2015 targets ** Subsequent projects to validate 2015 targets		

Vehicle Status: All of First Generation Vehicles Deployed, 2nd Generation Initial Introduction in Fall 2007

~2/3 of the Project's Infrastructure to Refuel Vehicles Has Been Installed – 4 Types (examples)

Refueling Stations from All Four Teams Test Vehicle/Infrastructure Performance in Various Climates

6

>2 Years of Data Analyzed To-Date

Current Status of Data Reporting to the Hydrogen Secure Data Center at NREL

NREL Web Page Provides Direct Access to All Composite Data Products

On-Road FC Operating Power Points: Dyno Tests Validated High Efficiency at 1/4 Power Point – Key to Overall Efficiency

Method for Projecting Time to 10% Fuel Cell Stack Voltage Degradation

As More Gen 1 Data Is Accumulated, Some Teams Are Demonstrating Long FC Durability

- (1) Range bars created using one data point for each OEM.
- (2) Range (highest and lowest) of the maximum operating hours accumulated to-date of any OEM's individual stack in "real-world" operation.
- (3) Range (highest and lowest) of the average operating hours accumulated to-date of all stacks in each OEM's fleet.
- (4) Projection using on-road data -- degradation calculated at high stack current. This criterion is used for assessing progress against DOE targets, may differ from OEM's end-of-life criterion, and does not address "catastrophic" failure modes, such as membrane failure.
- (5) Using one nominal projection per OEM: "Max Projection" = highest nominal projection, "Avg Projection" = average nominal projection. The shaded green bar represents an engineering judgment of the uncertainty due to data and methodology limitations. Projections will change as additional data are accumulated.

Created: Aug-23-07 10:42 AM

Primary Factors Affecting Learning Demo Fleet Fuel Cell Degradation: FC Diversity (Among Teams) Limits Drawing Strong Conclusions

~29% Decay rate variance explained by a combination of the data variables below ¹	Correlation to Decay Rate Data	
Starts per hour (+)		
Power levels (high & average) (+)	High decay rate ²	
Trip length (-)		
Time between trips (+)		
~10% Decay rate variance explained by a combination of the data variables below ¹	Correlation to Decay Rate Data	
Idle time (+)	High decay rate ²	
Power levels (low) (+)		

1. Findings based on a Learning Demonstration Fleet, Partial Least Squares (PLS) regression model. Approximately 39% decay rate variance explained by the model.

2. As part of the variable combination, a (+) indicates a directional relation to high decay rate and a (-) indicates an inverse relation.

Learning Demo FCVs Tend to Take Many More Trips <2 Miles Than Compared to National Average

Easier (but Still Difficult!) to Pull Out Dominant Degradation Factors When Looking at One Team's Stacks at a Time

- 1. Results are from partial least squares (PLS) regression analysis of each team's fleet of vehicles individually
- 2. First two collections of factors cover ~61%-76% of decay rate variance

Created: Aug-31-07 9:00 AM

Most of Infrastructure Safety Reports are Non-Events (and Most of Those, Alarms Only)

15

No Single Dominant Factor Triggering H2 Refueling Station Safety Reports

Actual Vehicle Refueling <u>Times</u> and <u>Amounts</u> from >6,300 Events: Measured by Stations or by Vehicles

Actual Vehicle Refueling <u>Rates</u> from >6,300 Events: Measured by Stations or by Vehicles

Communication H2 Fills Achieving Higher Fill Rate than Non-Communication, But Not Uniformly

Large Spread in H2 Tank Level at Refueling Peak at ~1/4 Full, Median at ~3/8 Full

1. Some refueling events not recorded/detected due to data noise or incompleteness.

2. The outer arc is set at 20% total refuelings.

3. If tank level at fill was not available, a complete fill up was assumed.

Created: Sep-10-07 3:14 PM

Refueling by Time of Day; Relatively Uniform Refueling Infrastructure Demand Between 8-4

Driving Trip Start Time – Day; Roughly Matches National Statistics Except for 5-6 PM

Summary

- More than half of project completed
 - 77 vehicles and 14 stations deployed
 - 800,000 miles traveled, 30,000 kg H₂ produced or dispensed
 - 114,000 individual vehicle trips analyzed
 - Project to continue through 2009
- Examination of Factors Affecting FC Degradation Initiated
 - More difficult to identify trends across all 4 teams than for each team individually
 - NREL will collaborate with each team to investigate further
- Total of 41 composite data products published to date
 - This presentation only covered some of the new/updated results
 - Web site allows direct web access to all CDPs
- Roll-out of 2nd generation vehicles is beginning now
 - First public 700 bar station opened in U.S. Irvine
 - Additional 700 bar refueling being installed in next year

Questions and Discussion

Project Contact: Keith Wipke, National Renewable Energy Lab 303.275.4451 keith wipke@nrel.gov

All public Learning Demo papers and presentations are available online at http://www.nrel.gov/hydrogen/proj tech validation.html

