Fleet Performance Results Using Biodiesel

Robb Barnitt
National Renewable Energy Laboratory
Golden, Colorado

Clean Cities Coordinators Webcast
March 24, 2007

U.S. Department of Energy
Office of FreedomCAR and Vehicle Technologies
Agenda

1. Fleet Evaluation Team Background
2. NREL Fleet Test Activities
3. RTD B20 Evaluation Results
 • Project objectives and approach
 • Mileage accumulation, fuel economy
 • Road calls and maintenance
 • Fuel and fuel filter analysis
 • Lube oil analysis
 • Chassis dynamometer emission results
 • Conclusions
B20 Fleet Evaluation Team

- Early NBB requests of OEMs
 - Warranty support for B20
 - All wanted more field data
- Major OEMs, industry experts, and stakeholders participate
- Biodiesel proponents: “No B20 issues in the field”
- OEMs: “Prove it with quantifiable data”
- Active since 2003
- Gather information about the B20 usage experience
- Now known as the Biodiesel Blend Evaluation Team (BBET), with a focus on B20
B20 FET Team Members

- Bosch
- Case New Holland
- Caterpillar
- Cummins
- DaimlerChrysler
- Delphi Diesel Systems
- Department of Defense
- Engine Manufacturers Association
- Fleetguard
- Ford Motor Co.

- General Motors
- International
- John Deere
- National Biodiesel Board
- NREL
- Parker - Racor
- Siemens Diesel Systems
- Stanadyne Corp.
- Volkswagen AG
- Volvo Truck
NREL’s Fleet Test and Evaluation Team

• Focused on evaluating advanced technologies in medium and heavy vehicle applications

• Main goals:
 – Facilitate the transition of advanced technologies from R&D to the marketplace
 – Provide potential users with accurate and unbiased information on vehicle performance and costs

• Fleet projects
 – Denver Regional Transportation District (RTD)
 – United States Postal Service (USPS)
 – St. Louis Metro
B20 Fleet Evaluation – Objectives

- Compare vehicles operating in the field on B20 and conventional diesel over 24 months:
 - Engine performance
 - Fuel economy
 - Vehicle maintenance cost
 - Fuel-induced variations in operation and maintenance
 - Lube oil performance
 - Emissions

- Exhibit high degree of experimental control in vehicle selection and duty cycle
- Aid engine OEMs in exploring effects of B20 on engine durability
- Aid potential B20 users in understanding costs, benefits, and differences in operation
B20 Fleet Evaluation – Approach

- Nine mechanically identical Denver RTD transit buses:
 - 2000 Orion V, Cummins ISM
 - Five operated on B20, four on diesel
- Dedicated to Skip Route in Boulder identical duty cycle
- RTD submitted data electronically from their internal database
 - Fuel, labor, parts
- In-use fuel economy and maintenance costs analyzed by NREL

- Fuel delivery and vehicle tank sample analysis
- Periodic oil sampling at drain interval and analysis
- Two study buses emissions tested on chassis dyno at NREL’s ReFUEL facility
Mileage Accumulation

Running Average Monthly Miles Per Bus

- 4,200 miles per month per bus
On-Road Fuel Economy

• 4.41 mpg Diesel, 4.41 mpg B20
Maintenance Costs – Total

- 24-month average maintenance costs:
 - $0.54/mile diesel, $0.51/mile B20
 - Diesel transmission repairs drive difference
24-month average engine and fuel system maintenance costs:
- $0.05/mile diesel, $0.07/mile B20
Maintenance Costs – Engine, Fuel System

<table>
<thead>
<tr>
<th></th>
<th>Diesel</th>
<th>B20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel pump</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fuel injector</td>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>

- Injector discrepancy driven by replacement of full set, then cylinder head replacement
- No reason to suspect B20 fuel currently
 - Cummins tear-down analysis of 6-injector set that failed
Road Calls

Running Miles Between Road Calls (MBRC)

- Average MBRCs are comparable
 - 3,197 Diesel, 3,632 B20
Fuel Analysis

- Biodiesel content of delivery samples scattered
 - Changes to fuel blending & sampling implemented May ‘05
- Vehicle samples taken are near B20
- **Knowledge of sampling point is important**

![Graph showing delivery sample biodiesel content](image)
Fuel Analysis

• March 2006 vehicle fuel sample analysis
 – Acid value, peroxides, aldehydes (alkanals) determined by Saftest
 – Acid value and peroxides consistently low as compared to NREL B20 fuel quality survey
 – Alkanals indicate some oxidative degradation, but are not high

<table>
<thead>
<tr>
<th>Vehicle Number</th>
<th>B100 Content Volume %</th>
<th>Acid Value mgKOH/g</th>
<th>Peroxide Saftest™ ppm</th>
<th>Aldehyde Saftest™ mmol/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2207</td>
<td>20.3</td>
<td><0.1</td>
<td></td>
<td>58.212</td>
</tr>
<tr>
<td>2208</td>
<td>18.4</td>
<td><0.1</td>
<td>13.22</td>
<td>57.902</td>
</tr>
<tr>
<td>2209</td>
<td>17.4</td>
<td><0.1</td>
<td>11.59</td>
<td>55.696</td>
</tr>
<tr>
<td>2210</td>
<td>18.7</td>
<td><0.1</td>
<td>16.75</td>
<td>73.35</td>
</tr>
<tr>
<td>2211</td>
<td>19.7</td>
<td><0.1</td>
<td>11.42</td>
<td>61.546</td>
</tr>
</tbody>
</table>
Fuel Analysis

- Composite March 2006 vehicle fuel samples had more detailed analysis
 - Higher cetane number
 - Lower sulfur content
 - 2.4% lower B20 energy content

<table>
<thead>
<tr>
<th>Analysis</th>
<th>ASTM Method</th>
<th>B20 Composite</th>
<th>Diesel Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water and sediment vol %</td>
<td>D2709</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Cloud point °C</td>
<td>D2500</td>
<td>-13</td>
<td>-14</td>
</tr>
<tr>
<td>Sulfur ppm</td>
<td>D5453</td>
<td></td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>D2622</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td>Aromatics vol %</td>
<td>D1319</td>
<td></td>
<td>25.6</td>
</tr>
<tr>
<td>Olefins vol %</td>
<td></td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Saturates vol %</td>
<td></td>
<td></td>
<td>73.1</td>
</tr>
<tr>
<td>C mass%</td>
<td>D5291</td>
<td>84.7</td>
<td>86.6</td>
</tr>
<tr>
<td>H mass%</td>
<td></td>
<td>12.9</td>
<td>13.2</td>
</tr>
<tr>
<td>Derived cetane number</td>
<td>D6890</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td>LHV BTU/lb</td>
<td>D240</td>
<td>17,860</td>
<td>18,307</td>
</tr>
</tbody>
</table>
B20 Fuel Filter Plugging

Three filter plugging events:
1. April 2005 – Two buses
 - Brown slime. Cold snap?
 - Biocide applied to next fuel delivery

<table>
<thead>
<tr>
<th>Bus</th>
<th>Biodiesel</th>
<th>CFPP °C</th>
<th>Water (ppm)</th>
<th>Bug Alert</th>
</tr>
</thead>
<tbody>
<tr>
<td>2208</td>
<td>16.9</td>
<td>-25</td>
<td>77</td>
<td>27 (low)</td>
</tr>
<tr>
<td>2209</td>
<td>19.2</td>
<td>-25</td>
<td>88</td>
<td>57 (low)</td>
</tr>
<tr>
<td>2210</td>
<td>20.3</td>
<td>-25</td>
<td>97</td>
<td>1 (very low)</td>
</tr>
<tr>
<td>2211</td>
<td>15</td>
<td>-30</td>
<td>78</td>
<td>93 (low-med)</td>
</tr>
</tbody>
</table>

- Filter residue analysis indicated presence of plant sterols
B20 Fuel Filter Plugging

2. June 2005 – One bus
 - B20 storage tank fuel level low
 - Sediment plugged dispenser and fuel filters
 - Fuel filter samples collected
 - Preliminary GC-MS results indicate high levels of phytosterols

3. July 2006 – Two buses
 - B20 storage tank fuel level low (end of project)
 - Sediment plugged fuel filters (Soap?)
 - Fuel filter samples, fuel storage tank samples collected
 - Preliminary GC-MS results indicate high levels of phytosterols
Lube Oil Analysis

- One set of oil drain samples (March/April 2006) analyzed by Cummins
- Exponential decay of ZDDP and TBN consistent with previous Cummins testing
- No difference in ZDDP decay between diesel and B20 samples
- TBN decay may be occurring more slowly in B20 samples
Lube Oil Analysis

<table>
<thead>
<tr>
<th></th>
<th>Diesel</th>
<th>B20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Dilution</td>
<td>Low</td>
<td>Lower</td>
</tr>
<tr>
<td>Metals (evaporative)</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>Metals (engine wear)</td>
<td>Low</td>
<td>Lower @ high mileage</td>
</tr>
<tr>
<td>Soot</td>
<td>Low</td>
<td>50% lower</td>
</tr>
<tr>
<td>Viscosity, Viscosity Index</td>
<td>No difference</td>
<td></td>
</tr>
</tbody>
</table>
Bus Chassis Dynamometer Testing

- Two in-use buses tested
- Cummins ISM 2000 engine – no EGR
- In-use B20 vs. diesel fuel

<table>
<thead>
<tr>
<th></th>
<th>Skip Bus Route</th>
<th>CSHVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg Speed</td>
<td>15.6 mph</td>
<td>14.2 mph</td>
</tr>
<tr>
<td>Max Speed</td>
<td>40 mph</td>
<td>44 mph</td>
</tr>
<tr>
<td>Stops/Mile</td>
<td>0.78</td>
<td>0.75 21</td>
</tr>
</tbody>
</table>
Bus Chassis Dynamometer Test Results

Error bars show 95% confidence interval of the mean.

- NOx (g/mi): Approx. -4.5%
- THC X 10 (g/mi): Approx. -24.0%
- CO (g/mi): Approx. -29.0%
- PM X 10 (g/mi): Approx. -18.5%
- Fuel Economy (mpg): Approx. -2%
Conclusions

• No significant difference between B20 and diesel baseline:
 – On-road fuel economy
 – Reliability (road calls)
 – Total maintenance costs
 – Fuel System and engine maintenance costs

• Filter plugging issues – plant sterols one potential cause

• Early B20 splash-blending issues, generally B20 in tank

• Limited lube oil data suggests no harm with B20 use, some potential benefits

• Significant emissions reductions including NOx

• SAE Paper 2006-01-3253
Information

• SAE Paper 2006-01-3253 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

• Contact information
 – Robb Barnitt
 Engineer
 National Renewable Energy Laboratory
 Golden, CO
 303-275-4489
 robb_barnitt@nrel.gov