E85 and Flexible Fuel Vehicles

Bob McCormick

June 13, 2007
Governor’s Biofuels Coalition Summit

Office of FreedomCAR and Vehicle Technologies
Fuels Technologies Subprogram
Non-Petroleum Based Fuels Activity
Dennis Smith, Technology Manager
Agenda

- Ethanol and Ethanol Blends
- Flexible Fuel Vehicles
- Conversions
- Considerations for E85 Use
- Lifecycle Analysis
- Vehicle Emissions
Ethanol and Ethanol Blends

• Alcohol-based fuel produced from starch crops or cellulosic biomass such as trees and grasses:
 – Currently, corn is primary feedstock
 – Cellulosic feedstock in development

• High octane (100+):
 – Used to enhance octane of gasoline (E10)
 – As oxygenate to reduce CO emissions during combustion (E10)

• As an alternative fuel, most commonly used in a summer blend of approximately 85% ethanol and 15% gasoline (E85). Winter blends may be as low as 70% ethanol.

• E85 has 27-36% less energy content than gasoline so mileage is adversely affected. OEM’s estimate 15-30% decrease in mileage.
Flex Fuel Vehicles (FFVs)

- Flex fuel vehicles can use E85, unleaded gasoline or any combination of the two.

- Key component differences in a flex fuel vehicle are:
 - Higher volume fuel pump
 - Larger diameter injectors
 - Different materials in the fuel system, heads, valves, and piston rings
 - ECU calibration

- Conventional vehicles are not certified for use with E85

- If E85 is used in a non-flex fuel vehicle the driver will experience very poor acceleration, a substantial increase in maintenance costs, eventually component failure

- FFVs are available in light duty vehicles including cars, vans, ½ ton pickups, and SUV’s. There are an estimated 5 million FFVs on the road in the U.S.
FFV Conversions

• FFV conversions are considered “Aftermarket Conversion Systems”, not just “Devices” and therefore are required to obtain a Certificate of Conformity
 – The same emission certification required of a new vehicle

• Currently no conversion kits are approved by the EPA.
 – To date none have obtained a Certificate of Conformity. Two are in the approval process.
Points to Consider for E85

• Decreased mileage and range when using E85

• High level of fuel pricing volatility until demand and supply balance
 – Needs to cost 20%-30% less to make economic sense

• Refueling infrastructure not in place in all geographies. Currently there are approximately 1200 stations in the U.S. offering E85.

• Colorado currently has 20 stations with 50 projected by end of 2007.

• Controversy in press over life cycle energy balance and greenhouse gas emissions

• Limited tailpipe emission data.
Life Cycle Energy Balance

*ANL, Ethanol, the complete energy lifecycle picture, March 2007
Fossil Energy Ratio (FER) = \frac{\text{Energy Delivered to Customer}}{\text{Fossil Energy Used}}

- Cellulosic Ethanol Biorefinery: 5.3
- Biodiesel (soybean oil): 3.2
- Corn Ethanol: 1.4
- Gasoline: 0.8
- Electricity: 0.4
Greenhouse Gas (GHG) Impact*

Replacing a gallon of gasoline with equivalent EtOH

- Corn EtOH using coal as the energy source- approx. 2% increase in GHG’s
- Corn EtOH using current energy sources- approx. 15% decrease in GHG’s
- Corn EtOH using Natural Gas- approx. 28% decrease in GHG’s
- Cellulosic EtOH- approx. 85% decrease in GHG’s

*ANL, Ethanol, the complete energy lifecycle picture, March 2007
Flexible Fuel Vehicle Emissions

• Limited data on recent model year vehicles
• Available data currently being reviewed by NREL
• Further testing being completed by NREL, EPA and CRC
• Past data shows for operation on E85:
 - GHG- reduced CO$_2$ emissions and increased CH$_4$ emissions
 - Slightly reduced evaporative emissions compared to gasoline
 - Reduced air toxic emissions for benzene and 1,3 butadiene
 - Increased air toxic emissions for acetaldehyde and formaldehyde
NREL E85 Emissions Testing

• Testing being performed at Colorado Department of Public Health and Environment mobile source emissions lab as part of Colorado E85 Coalition initiative
 – Winter E85 (~71% ethanol) and winter gasoline (E10)
 – Summer E85 (~85% ethanol) and summer gasoline (E0)

• Using standard EPA testing requirements and protocol

• Using Colorado state fleet vehicles and possibly EPA fleet vehicles (minimum 5 vehicles)

• All testing to be completed Summer 2007
 – Some of the only available data on recent model year FFVs

• Report to be issued 3rd Qtr 2007