Plug-In HEV Vehicle Design
Options and Expectations

ZEV Technology Symposium
California Air Resources Board
Sacramento, CA

September 27, 2006

Tony Markel
National Renewable Energy Laboratory

With support from
FreedomCAR and Vehicle Technologies Program
Office of Energy Efficiency and Renewable Energy
U.S. Department of Energy
Key Messages

- There are many ways to design a PHEV ...
 - the best design depends on your objective
- PHEVs provide potential for petroleum displacement through fuel flexibility
 - what are the cost and emissions tradeoffs
- PHEV design space has many dimensions
 - simulation being used for detailed exploration
- Simulations using real-world travel data provides early glimpse into in-use operation
PHEV Stakeholder Objectives

US Gov./DOE
Reduced petroleum use

Consumers
Affordable
Fun to drive
Functional

California Gov.
Reduced air pollution

Auto Manufacturer
Sell cars

Electric Utility
Sell electricity
A Plug-In Hybrid-Electric Vehicle (PHEV)

Fuel Flexibility

- PETROLEUM
- ELECTRICITY

- REGENERATIVE BRAKING
- ADVANCED ENGINE
- ENGINE DOWNSIZING
- ENGINE IDLE-OFF
- BATTERY RECHARGE
- ELECTRIC ACCESSORIES

AND/OR

Fuel Flexibility
Some PHEV Definitions

Charge-Depleting (CD) Mode: An operating mode in which the energy storage SOC may fluctuate but on-average decreases while driving.

Charge-Sustaining (CS) Mode: An operating mode in which the energy storage SOC may fluctuate but on-average is maintained at a certain level while driving.

All-Electric Range (AER): After a full recharge, the total miles driven electrically (engine-off) before the engine turns on for the first time.

Electric Vehicle Miles (EVM): After a full recharge, the cumulative miles driven electrically (engine-off) before the vehicle reaches charge-sustaining mode.

Charge-Depleting Range (CDR): After a full recharge, the total miles driven before the vehicle reaches charge-sustaining mode.

Blended Strategy: A charge-depleting operating strategy in which the engine is used to supplement battery/motor power.

PHEV20: A PHEV with useable energy storage equivalent to 20 miles of driving energy on a reference driving cycle. A PHEV20 can displace petroleum energy equivalent to 20 miles of driving on the reference cycle with off-board electricity.

NOTE: PHEV20 does not imply that the vehicle will achieve 20 miles of AER, EVM or CDR on the reference cycle nor any other driving cycle. Operating characteristics also depend on the power ratings of components, the powertrain control strategy and the nature of the driving cycle.
Battery Definition as Key Input to Simulation

Input parameters that define the battery in BLUE

- PHEV range
- kWh/mi (from simulation)
- SOC window
- P/E ratio
- Performance constraints

DOH = degree of hybridization

- kWh usable
- kWh total
- kWmotor
- kWengine
- Benefit of plugging-in
- Total MPG Benefit
- Benefit of hybridization
Batteries in Current PHEVs

- Varta
- Electro Energy Inc.
- Johnson Controls/SAFT
- Kokam
- Valence Technology
- A123 Systems

- NiMH
- Co/Ni based Li-Ion
- Iron phosphate based Li-Ion
In setting requirements, we must have realistic expectations for battery SOC design window because of the impacts on total battery size and life.

SOC design window is a key factor in battery sizing:

\[kWh_{total} = \frac{kWh_{useable}}{SOC \text{ window}} \]

Battery SOC swing is a strong function of driving habits:

Battery cycle life is a strong function of SOC swing:
Battery SOC Design Window

Battery SOC design curve for 15 year cycle life

Design SOC window based on PHEVx

Average daily SOC swing based on daily mileage distribution

Daily mileage probability distribution

Daily Mileage / PHEVx

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0 1 02 03 04 05 06 07

Daily mileage probability distribution

NREL National Renewable Energy Laboratory
Operating Strategy Options
All-Electric or Blended

All-Electric

- Engine turns on when battery reaches low state of charge
- Requires high power battery and motor

Blended

- Engine turns on when power exceeds battery power capability
- Engine only provides load that exceeds battery power capability
Real Driving Survey Data

- Provides valuable insight into travel behavior
- GPS augmented surveys supply details needed for vehicle simulation
St. Louis data set includes 227 vehicles from 147 households
• Complete second by second driving profile for one day
• 8650 miles of travel
• St. Louis data set is a small sample of real data
• NPTS data is generated from mileage estimates
Consumption Distribution
Many PHEVs Better than Rated Values

“Fleet” results are based on simulations of 227 vehicle driving profiles from St. Louis metropolitan area.
PHEVs Reduce Fuel Consumption By >50% On Real-World Driving Cycles

227 vehicles from St. Louis each modeled as a conventional, hybrid and PHEV

• 8647 total miles driven
• 100% replacement of sample fleet

Average Daily Costs

<table>
<thead>
<tr>
<th></th>
<th>Gas.</th>
<th>Elec.</th>
<th>¢/mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>$3.45</td>
<td>---</td>
<td>9.1</td>
</tr>
<tr>
<td>HEV</td>
<td>$2.48</td>
<td>---</td>
<td>6.5</td>
</tr>
<tr>
<td>PHEV20</td>
<td>$1.58</td>
<td>$0.48</td>
<td>5.4</td>
</tr>
<tr>
<td>PHEV40</td>
<td>$1.21</td>
<td>$0.72</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Assumes $2.41/gal and 9¢/kWh

PHEVs:
>40% reduction in energy costs
>$500 annual savings
Simulated In-Use All-Electric Range Distribution

- Vehicles were designed to operate all electrically on UDDS
- Power demands of real profiles exceed UDDS peak power within the first few miles
Fuel Economy and All-Electric Range Comparison

- Significant difference between rated (EPA drive cycles) and real-world median values for PHEVs
 - Consumers likely to observe fuel economy higher than rated value in daily driving
 - Vehicles designed with all-electric range likely to operate in a blended mode to meet driver demands

<table>
<thead>
<tr>
<th></th>
<th>Fuel Economy (mpg) **</th>
<th>All Electric Range (mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rated</td>
<td>Median</td>
</tr>
<tr>
<td>Conventional</td>
<td>26</td>
<td>24.4</td>
</tr>
<tr>
<td>HEV</td>
<td>39.2</td>
<td>35.8</td>
</tr>
<tr>
<td>PHEV20</td>
<td>54</td>
<td>70.2</td>
</tr>
<tr>
<td>PHEV40</td>
<td>67.4</td>
<td>133.6</td>
</tr>
</tbody>
</table>

** Fuel economy values do not include electrical energy consumption
PHEV20 Savings Relative to Conventional and HEV

- Savings relative to conventional are almost entirely distance dependent.
- Savings relative to HEV are distance dependent up to PHEV distance then constant.
Insights:

The PHEV20s that saved the most fuel relative to an HEV travel ~25 miles with speeds under 60 mph and light accelerations.

The PHEV20s that saved the least fuel relative to the HEV in the 20-30 mile range had periods of 60+ mph highway driving and the accelerations were significantly more aggressive.
Summary and Conclusions

- PHEVs provide petroleum displacement through fuel flexibility
- Design needs to consider a spectrum of stakeholder objectives
- Analysis of real-world travel behavior provides perspective on design challenges
 - Vehicles designed as all-electric likely to operate as blended
 - What’s emissions impact of real-world blended operation
- In-use petroleum displacement not tied to all-electric range
 - Consider energy equivalent all-electric range
- PHEV benefit is strongly related to distance and aggressiveness of real-world usage