Opportunities and Challenges for Alternative Fuels

Presented at the CSIS Symposium on Future Fuels

June 15, 2006

Dr. Dan E. Arvizu
Director, National Renewable Energy Laboratory
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the “Government”) retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.
Renewable Energy Indicators
As of Year End 2004

Power Generation
Existing Capacity* – GW

- Geothermal power 8.9
- Solar thermal power 0.04
- Solar PV, off-grid 2.2
- Solar PV, grid-connected 1.8
- Biomass power 39
- Ocean (tidal) power 0.03
- Wind turbines 48

Transport Fuels
Billion liters/year

- Ethanol production
- Biodiesel production
- Gasoline production

*Does not include hydropower

Source: REN21 Renewables 2005 Status Report,
Significance of the 1.3 Billion Ton Biomass Scenario

Based on ORNL & USDA Resource Assessment Study by Perlach et.al. (April 2005)
Biofuels

Biofuels status
• Biodiesel – 75 million gallons (2005)
• Corn ethanol
 – 81 commercial plants
 – 3.9 billion gallons (2005)
 – Today’s cost ~$1.35/gallon of gasoline equivalent (gge)
• Cellulosic ethanol
 – Projected commercial cost ~$3.00/gge

Potential
• 2012 goal – cellulosic ethanol ~$1.42/gge
• 2030 goal – all ethanol = 30% of transportation fuels

NREL Research Thrusts
• The Biorefinery
• Solutions to under-utilized waste residues
• Energy crops

Source: U.S. Department of Energy, National Biodiesel Board, Renewable Fuels Association
Building the Supply Chain

Biomass Feedstock Supply
Biomass Feedstock Transport
Biomass Conversion Technology
Markets: Fuels & Vehicles
Biomass Feedstock Supply
Renewable Waste Resources

Biomass Feedstock Transport
Ethanol Distribution Infrastructure Hurdles

- Estimate that E85 pumps will be required in 50% of U.S. service stations
 - Public policy support may be necessary to encourage investment

- E10 and E85 may enter U.S. pipeline system
 - E10 may move through product pipelines if they are modified to trap water, sediment and to keep ethanol from other products (diesel)
 - E85 dedicated pipelines will be created to connect large producing centers to large use centers

- E85 pumps may require new or modified underground tanks at retail outlets
Biomass Conversion Technology
Biochemical Conversion Barrier Areas

- **Feedstock Interface**
 - Pretreatment
 - Xylose yield
 - Xylose degradation
 - Solids loading
 - Reactor costs
 - Hydrolyzate Conditioning
 - Sugar loses
 - Enzymatic Hydrolysis
 - Glucose yield
 - Solids loading (titer)
 - Fermentation
 - Ethanol
 - Yields from all sugars
 - Concentration
 - Rate

- **Product Recovery**
 - Product
 - Byproducts
 - Residue Processing

- **Enzyme Production**
 - Enzyme cost

Products

Byproducts
Biomass Conversion Technology
Reducing the Cost of Ethanol from Stover

State of technology estimates

Minimum ethanol selling price ($/gal)

- Enzyme
- Conversion
- Current DOE cost targets
- President’s Initiative
- Costs in 2002$

Feed $53/ton

2005 yield 65 gal/ton

Feed $30/ton Yield 90 gal/ton

Feed $30/ton Yield 94 gal/ton

10,000 TPD

Biomass Conversion Technology
Thermochemical Conversion Barrier Areas

Feed Processing and Handling
- Size Reduction
- Storage and Handling
- De-watering
- Drying

Gasification and Pyrolysis
- Partial Oxidation
 - Air blown
 - Oxygen blown
 - Indirect
- Flash pyrolysis
- Steam pyrolysis
- Vacuum pyrolysis

Gas Cleanup
- Particulate removal
 - Tar reforming
 - Benzene removal
 - S, N, Cl mitigation
- High T Filtration
 - Alkali removal

Gas Conditioning
- Methane reforming
 - CO₂ removal
 - H₂/CO adjustment
 - Sulfur polishing
- Aerosol collection
 - Microfiltration
 - Chemical Stabilization
 - Hydrotreating
 - Dehydration

Fuel Synthesis
- C1 chemistry
 - FT liquids
 - MTG
 - Mixed OH
- Upgrading
- Production Separation

Heat & Power
Markets: Fuels & Vehicles
U.S. Transportation

<table>
<thead>
<tr>
<th></th>
<th>Autos</th>
<th>Light Trucks</th>
<th>Heavy Trucks</th>
<th>Airplanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of transport fuel consumption</td>
<td>39%</td>
<td>28%</td>
<td>24%</td>
<td>9%</td>
</tr>
<tr>
<td>Fleet size – Millions</td>
<td>130</td>
<td>80</td>
<td>7</td>
<td>0.0085</td>
</tr>
<tr>
<td>New – Millions/year</td>
<td>8.5</td>
<td>8.5</td>
<td>0.5</td>
<td>Small</td>
</tr>
<tr>
<td>Median life – Years</td>
<td>17</td>
<td>16</td>
<td>28</td>
<td>22</td>
</tr>
</tbody>
</table>

Source: SAIC/MISI

Biggest, fastest savings
Markets: Fuels & Vehicles

Vehicle Needs

- Target to have all new light-duty vehicles being E85-compatible FFVs by 2020
 - This is a significant public policy opportunity

- May also encourage E85+ optimized FFVs to appear on large scale to help drive ethanol transition

- Next generation – Flex Fuel, Plug-in Hybrid Vehicles
30 x 30 Target
Replace 30% of 2004 motor gasoline demand with ethanol by 2030 – 60 billion gallons