

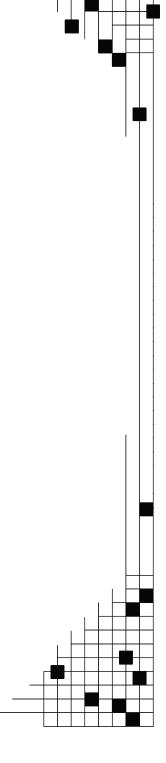
Nexant Parabolic Trough Solar Power Plant Systems Analysis

Task 1: Preferred Plant Size January 20, 2005 — December 31, 2005

B. Kelly Nexant, Inc. San Francisco, California Subcontract Report NREL/SR-550-40162 July 2006

Nexant Parabolic Trough Solar Power Plant Systems Analysis

Task 1: Preferred Plant Size January 20, 2005 — December 31, 2005


B. Kelly Nexant, Inc. San Francisco, California

NREL Technical Monitor: H. Price Prepared under Subcontract No. LDC-5-55014-01 Subcontract Report NREL/SR-550-40162 July 2006

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle

Contract No. DE-AC36-99-GO10337

This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% post-consumer waste

Contents

1. Introduction	1
2. Rankine Cycle Models	2
3. Solar Multiples	6
4. Collector Field Piping Models	7
5. Annual Energy Calculations	10
6. Economic Analysis	12
7. Commercial Turbine-Generators	15
8. Conceptual Cost Estimate	17
Heat Transport System Flow Diagram	17
Items Included in the Estimate	17
Items Excluded from the Estimate	18
Labor Rates and Indirect Costs	20
Single Line Diagrams	20
Sales Tax	20
Freight	20
Escalation	23
Contractor's Fee	23
Cost Estimate Summary and Details	23
9. Observations	24
Annual Plant Availability	24
Upper Limits on Plant Sizes	25
Appendix 1: Details of 250 MWe Plant Total Field Cost Estimate	26

Task 1 Preferred Plant Size

1. Introduction

The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII / IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII / IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes.

An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps:

- Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected.
- Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb_f/in² and 703 °F, and reheat steam conditions of 239 lb_f/in² and 703 °F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA.
- The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: 1) a solar-only project without thermal storage, and 2) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas.
- For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump power requirements were calculated with a field piping optimization model.
- Annual electric energy outputs, capital costs, and annual operating costs were calculated for each case using the default methods within Excelergy, from which estimates of the levelized energy costs were developed. The plant with the lowest energy cost was considered the optimum.

2. Rankine Cycle Models

The Rankine cycle design for the 88 MWe, 165 MWe, and 220 MWe plants closely followed the designs developed by Fichtner for the 55 MWe AndaSol project in Spain, and by Luz for the 88 MWe SEGS VIII / IX projects. The cycle is a conventional, single reheat design; the live steam pressure and temperature are 1,450 lb_{f}/in^{2} and 703 °F, respectively, and the reheat steam pressure and temperature are 269 lb_{f}/in^{2} and 703 °F, respectively. Extraction steam pressures, terminal temperature differences, and drain cooler approach temperatures for the 3 low pressure, and the 2 high pressure, closed feedwater heaters were derived from the AndaSol heat balance. The operating conditions for the 1 open deaerating feedwater heater also duplicated the AndaSol data.

The GateCycle flow diagram is shown in Figure 1. A list of the calculated cycle efficiencies, together with a comparison with efficiency data from existing plants, is shown in Table 1.

Gross cycle	GateCycle	Published
output, MWe	<u>calculation</u>	efficiency
55	0.375	0.375 ¹
88	0.377	0.377^{2}
165	0.379	N/A
220	0.380	N/A

Table 1
Calculated and Published Rankine Cycle Efficiencies

Notes:

- 1) Solar Millennium AndaSol heat balance, with steam chest leakage to condenser equal to 0.01 percent of live steam flow rate
- 2) SEGS IX heat balance, with steam chest leakage rate equal to 1.95 percent of live steam flow rate

High pressure turbine and intermediate/low pressure turbine expansion efficiencies in GateCycle were calculated using the General Electric Spencer-Cotton-Cannon correlations. In addition, the low pressure turbine efficiency was based on an exhaust loss at the entrance to the condenser of 5 Btu/lb_m, which was achieved by selecting an annulus area which yielded an exhaust velocity in the range of 500 to 550 ft/sec. For the two smaller plants, the agreements between the calculated and the published efficiencies were excellent.

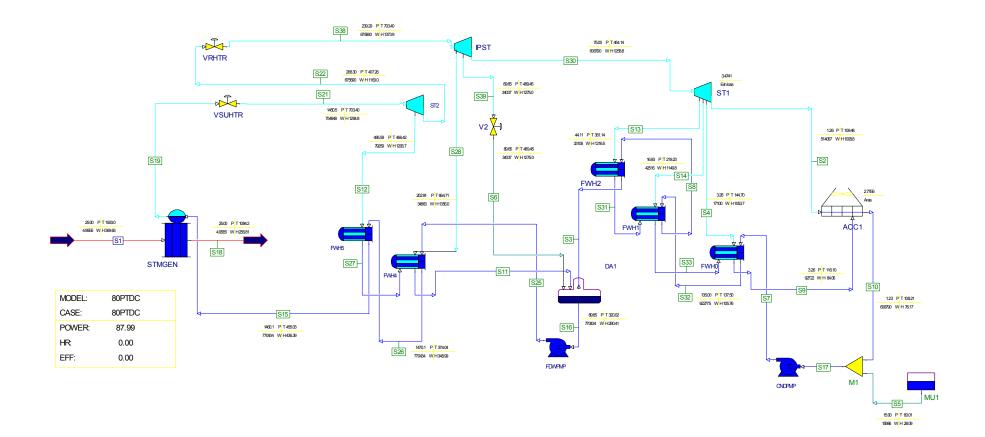


Figure 1 GateCycle Flow Diagram 88 MWe Rankine Cycle with Dry Heat Rejection Overall expansion efficiencies, together with the gross cycle efficiencies, are shown in Figure 2. The overall expansion efficiencies were calculated on a weighted average approach, as follows:

(HP output, MW)(HP efficiency) + (IP output, MW)(IP efficiency) + (LP output, MW)(LP efficiency) (HP output + LP output + IP output, MW)

The gross cycle efficiency improved by about 130 parts in 10,000 as the plant capacity increased from 50 MWe to 150 MWe. However, improvements in the cycle efficiency for plant sizes above 150 MWe were likely to be modest, with an asymptotic efficiency of perhaps 38.1 percent.

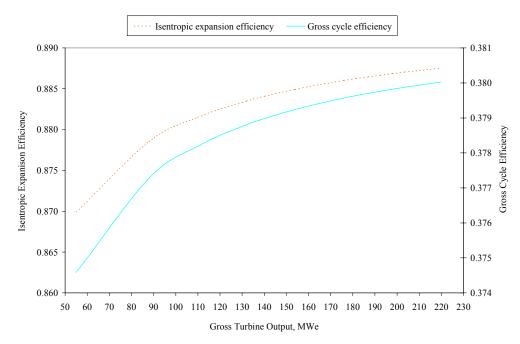


Figure 2 Turbine Expansion and Gross Cycle Efficiencies as a Function of Capacity

To help determine the source of the efficiency improvements with increasing capacity, isentropic expansion efficiencies were also calculated separately for the high pressure and the intermediate/low pressure turbine sections. The results are illustrated in Figure 3.

The increase in cycle efficiency was primarily a function of an increase in the high pressure turbine efficiency. The improvement can be traced to an increase in the length of the blades. The effect of non-uniform aerodynamic loads at the end of the blades decreased with length, and the (essentially) fixed steam leakage past the end of the blades represented a smaller portion of the total flow past the blade.

Figure 3 Turbine Section Expansion Efficiencies as a Function of Capacity

3. Solar Multiples

The optimization function within Excelergy was used to determine the preferred solar multiple for each of the 6 cases. The collector field design was based on the LS-2+ collector, with 6 solar collector assemblies in a loop. The annual performance calculations, capital cost estimates, and operating cost estimates were based on the default Excelergy methods. The results of the optimization calculations are shown in Table 2.

	Optimum	Collector Field
Plant Capacity and Design	Solar Multiple	<u>Area, m²</u>
88 MWe		
- Solar-only	1.45	534,230
- Hybrid with thermal storage	1.80	662,144
165 MWe		
- Solar-only	1.45	1,000,740
- Hybrid with thermal storage	1.80	1,241,520
220 MWe		
- Solar-only	1.45	1,331,812
- Hybrid with thermal storage	1.80	1,651,598

Table 2Results from Excelergy Solar Multiple Optimization Calculations

The variations in the Rankine cycle efficiency and the heat transport fluid pump power demand with plant capacity were not strong enough to cause the optimum solar multiple to be other than 1.45 for all of the solar-only plants, and 1.80 for all of the hybrid plants with thermal storage.

4. Collector Field Piping Models

An optimization model was run for each of the 6 cases to determine the parasitic power demand of the heat transport fluid pumps. The results of the optimizations are listed in Table 3 for the solar-only plants, and in Table 4 for the hybrid plants with thermal storage.

The unit pump power demand, in kWe/m², increased from a value of 0.00688 for the 88 MWe solar-only plant, to a value of 0.00827 for the 220 MWe hybrid plant with thermal storage. The effect can be traced to the pressure losses in the cold header and the hot header; as the collector field became larger, the lengths of the primary headers increased. Similarly, the annual unit thermal losses (kWht/m²), the annual unit pump energy demand (kWhe/m²), and the unit capital cost ($^{m^2}$) all increased with field area due to the increase in header lengths.

88 MWeCollector area, m²541,786Number of LS-2+ loops, each192Unit area, m²/MWe6,157Pressure losses, bar0.20- HTF pump outlet piping0.20		220 MWe 1,354,464 480 6,157 0.19
Number of LS-2+ loops, each192Unit area, m²/MWe6,157Pressure losses, bar - HTF pump outlet piping0.20	360 6,157 0.17	480 6,157 0.19
Unit area, m²/MWe6,157Pressure losses, bar - HTF pump outlet piping0.20	6,157 0.17	6,157 0.19
Pressure losses, bar - HTF pump outlet piping 0.20	0.17	0.19
- HTF pump outlet piping 0.20	••••	****
	••••	****
	2.78	2.22
- Cold header 1.96		3.22
- Loop 8.37	8.28	8.24
- Hot header 2.05	3.16	3.43
- HTF inlet piping 0.18	0.19	0.19
- Total 12.77	14.58	15.28
HTF pump power, kWe 3,729	7,653	10,538
Unit pump power, kWe / m ² 0.00688	0.00753	0.00778
Unit annual losses		
- Thermal, kWht / m^2 46.6	49.2	50.9
- Pumping, kWhe / m^2 11.1	11.7	11.9
Piping capital costs, \$		
- Collector field \$12,507,4	\$59 \$25,483,798	\$35,789,690
- Steam generator area \$992,9	60 \$1,931,914	\$2,434,411
- Total \$13,500,4	19 \$27,415,712	\$38,224,102
Unit capital cost, $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	\$25.09	\$26.42

Table 3Collector Field Piping Model Results for Solar-Only Plants

	<u>88 MWe</u>	<u>165 MWe</u>	<u>220 MWe</u>
Collector area, m^2	654,658	1,241,592	1,670,506
Number of LS-2+ loops, each	232	440	592
Unit area, m ² /MWe	7,439	7,525	7,593
Pressure losses, bar			
- HTF pump outlet piping	0.21	0.17	0.20
- Cold header	2.05	3.26	3.64
- Loop	8.83	8.54	8.34
- Hot header	2.27	3.26	4.01
- HTF inlet piping	<u>0.18</u>	<u>0.19</u>	<u>0.21</u>
- Total	13.54	15.42	16.41
HTF pump power, kWe	4,826	9,903	13,819
Unit pump power, kWe / m^2	0.00737	0.00798	0.00827
Unit annual losses			
- Thermal, kWht / m^2	47.5	50.5	53.0
- Pumping, kWhe / m^2	12.1	12.5	12.5
Piping capital costs, \$			
- Collector field	\$15,502,121	\$32,392,281	\$46,754,547
- Steam generator area	\$1,246,061	\$2,370,909	\$2,942,457
- Total	\$16,748,182	\$34,763,190	\$49,697,004
Unit capital cost, $ / m^2 $	\$23.68	\$26.09	\$27.99

Table 4Collector Field Piping Model Results for Hybrid Plants with Thermal Storage

The influence of the collector field area on the electric power demand of the heat transport fluid pump is illustrated in Figure 4. The curve is an extremely shallow parabola; thus, the parasitic energy demand of the pumps did not have a strong influence on the preferred plant size.

The pump power demand for the larger plants is in the multi-megawatt range. As such, starting the pumps must be coordinated with the local utility to prevent voltage and frequency upsets to the local grid. To some extent, these restrictions may have a minor detrimental effect on the annual plant availability, but a quantitative analysis has yet to be performed.

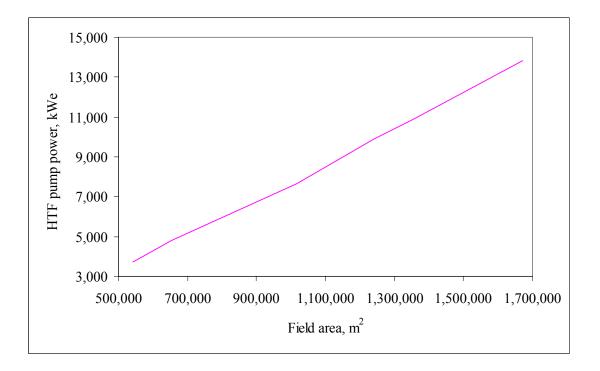


Figure 4 Heat Transport Fluid Pump Power Demand as a Function of Collector Field Area

5. Annual Energy Calculations

The annual net electric energy delivered by each of the six plant designs was calculated by the Excelergy computer program. The plant site was assumed to be Barstow, California, and the input parameters for the model were the default Excelergy values. One exception to the default parameters was the parasitic power demand of the heat transport fluid pumps; here, the demand was based on a polynomial curve fit of the data in Figure 4.

The results of the annual energy calculations are shown in Table 5 for the solar-only plants, and in Table 6 for the hybrid plants with thermal storage.

	<u>88 MWe</u>	<u>165 MWe</u>	<u>220 MWe</u>
Nominal gross plant rating, MWe	88.0	165.0	220.0
Isentropic expansion efficiency	0.866	0.874	0.876
Gross Rankine cycle efficiency	0.377	0.379	0.380
Excelergy inputs			
- SfArea, m^2	541,786	1,015,848	1,354,464
- Edesign, MWe	88.5	166.9	223.0
- NetCap, MWe	80.5	151.3	201.8
- Qdesign, MWt	234.7	440.0	586.7
- PTTmax, MWt	340.3	506.0	674.7
- PTTmin, MWt	35.2	66.0	88.0
- SfPar, MWe	0.144	0.270	0.360
- ChtfPar, MWe	3.729	7.653	10.538
- BopPar, MWe	2.183	4.053	5.375
- CtPar, MWe	1.500	2.813	3.750
- PbFixPar, MWe	0.443	0.835	1.115
Excelergy outputs			
- Qdni, MWh	1,491,262	2,793,491	3,717,653
- Egr, MWhe	222,685	419,682	560,317
- Epar, MWhe	22,201	43,079	58,114
- Enet, MWhe	200,484	376,603	502,203
- Net efficiency	0.134	0.135	0.135
Calculated efficiencies			
- Egr / Qdni	0.1493	0.1502	0.1507
- Epar / Egr	0.0997	0.1026	0.1037

Table 5Annual Performance of Solar-Only Plants

The gross solar-to-electric efficiency increased with plant size, as shown by the ratio Egr / Qdni. The effect can be traced to the increase in Rankine cycle efficiency with capacity. However, the net solar-to-electric

Nominal gross plant rating, MWe	<u>88 MWe</u> 88.0	<u>165 MWe</u> 165.0	<u>220 MWe</u> 220.0
Isentropic expansion efficiency	0.866	0.874	0.876
Gross Rankine cycle efficiency	0.377	0.379	0.380
Gloss Rankine Cycle efficiency	0.377	0.379	0.380
Excelergy inputs			
- SfArea, m ²	654,658	1,241,592	1,670,506
- Edesign, MWe	88.5	166.9	223.0
- NetCap, MWe	79.4	149.0	198.5
- Qdesign, MWt	234.7	440.0	586.7
- PTTmax, MWt	269.9	506.0	674.7
- PTTmin, MWt	35.2	66.0	88.0
- SfPar, MWe	0.174	0.330	0.444
- ChtfPar, MWe	4.826	9.903	13.819
- BopPar, MWe	2.183	4.053	5.375
- CtPar, MWe	1.500	2.813	3.750
- PbFixPar, MWe	0.443	0.835	1.115
Excelergy outputs			
- Qdni, MWh	1,848,325	3,465,609	4,610,310
- Qgas, MWh	7,496	14,042	18,845
- Egr, MWhe	276,760	522,265	697,064
- Epar, MWhe	27,950	54,086	73,051
- Enet, MWhe	248,809	468,178	624,013
- Net solar-to-electric efficiency	0.133	0.134	0.134
Calculated efficiencies			
- Egr / Qdni	0.1497	0.1507	0.1512
- Epar / Egr	0.1010	0.1036	0.1048

 Table 6

 Annual Performance of Hybrid Plants with Thermal Storage

efficiency was essentially independent of the plant size. In effect, the increase in gross efficiency was offset by the increase in parasitic energy demand, as shown by the ratio Epar / Egr.

For the hybrid plants, the use of natural gas was limited to the summer peak periods to ensure the revenue from the energy sales was sufficient to justify the expense of burning the fuel. With 3 hours of thermal storage and a solar multiple of 1.8, the plant can satisfy essentially all of the peak period energy demands without requiring the use of the fossil-fired heater. Thus, the annual thermal energy contribution from natural gas was less than 0.5 percent of the annual solar energy contribution for each of the three plants.

6. Economic Analysis

Levelized energy costs were calculated for each of the six plants using the year-by-year cash flow analysis within Excelergy. The capital cost for the plants, together with the annual operation and maintenance costs, were developed from the default values in Excelergy.

The input and the output financial parameters for the solar-only plants, and for the hybrid plants with thermal storage, are listed in Table 7 and Table 8, respectively.

All of the plants were assumed to be built and financed under commercial conditions, as follows:

- The manufacturing capacities for the solar equipment were sufficiently large that all of the mirrors and the heat collection elements could be fabricated, shipped, and assembled within a two-year period for the plant engineering, procurement, and construction.
- The debt interest rate and the required return on equity were independent of the capital cost of the plant.

	<u>88 MWe</u>	<u>165 MWe</u>	<u>220 MWe</u>
Financial parameters - Inputs			
- Capital cost, \$ 1000	\$267,747	\$465,148	\$600,039
(Unit capital cost, \$/kWe)	\$3,314	\$3,074	\$2,978
- O & M cost, \$ 1000	\$4,777	\$6,740	\$8,118
(Unit O&M cost, \$/MWhe)	\$24	\$18	\$16
- EPC period, years	2.0	2.0	2.0
- Interest during construction rate	7.0 %	>	>
- Debt interest rate	6.0 %	>	>
- Debt term, years	20	>	>
- Minimum debt coverage ratio	140 %	>	>
- Return on equity	15 %	>	>
- Effective income tax rate	40 %	>	>
- Investment tax credit	10 %	>	>
- Depreciation period, years	5	>	>
Financial parameters - Outputs			
- Optimum debt fraction	59.7 %	59.7 %	59.7 %
- Average debt coverage ratio	152 %	152 %	152 %
- Nominal discount rate	9.6 %	9.6 %	9.6 %
Levelized energy cost, \$/kWhe	\$0.164	\$0.146	\$0.140

Table 7
Input and Output Financial Parameters for Solar-Only Plants

	<u>88 MWe</u>	<u>165 MWe</u>	220 MWe	
Financial parameters - Inputs	<u> </u>			
- Capital cost, \$ 1000	\$351,427	\$617,121	\$800,519	
(Unit capital cost, \$/kWe)	\$4,426	\$4,145	\$4,049	
- O & M cost, \$ 1000	\$5,355	\$7,817	\$9,546	
(Unit O&M cost, \$/MWhe)	\$22	\$17	\$15	
- EPC period, years	2.0	2.0	2.0	
- Interest during construction rate	7.0 %	>	>	
- Debt interest rate	6.0 %	>	>	
- Debt term, years	20	>	>	
- Minimum debt coverage ratio	140 %	>	>	
- Return on equity	15 %	>	>	
- Effective income tax rate	40 %	>	>	
- Investment tax credit	10 %	>	>	
- Depreciation period, years	5	>	>	
- Annual fuel use, 10 ⁶ Btu	25,575	47,912	64,298	
Financial parameters - Outputs				
- Optimum debt fraction	59.7 %	59.8 %	59.8 %	
- Average debt coverage ratio	152 %	151 %	151 %	
- Nominal discount rate	9.6 %	9.6 %	9.6 %	
Levelized energy cost, \$/kWhe	\$0.169	\$0.153	\$0.147	

Table 8
Input and Output Financial Parameters for Hybrid Plants with Thermal Storage

The levelized energy costs for the six plants are shown in Figure 5. Both the solar-only and the hybrid plants with thermal storage showed decreases in the levelized energy costs with increases in the plant capacity. However, the lowest energy costs occurred with net plant capacities in the range of 220 to 250 MWe. For plant capacities above 250 MWe, the energy costs were likely to remain invariant, for the following reasons:

- The gross Rankine cycle efficiency increased with plant capacity, but appears to have an asymptotic value no larger than 0.381, as illustrated in Figure 2
- The unit annual parasitic energy demand of the heat transport fluid pumps, in kWhe/m², increased as the size of the collector field increased
- As discussed in Section 8, Conceptual Cost Estimate, various plant functions required multiple equipment items, even at the largest commercial size, be used. As a result, not all of the theoretical benefits of economies of scale could be realized.

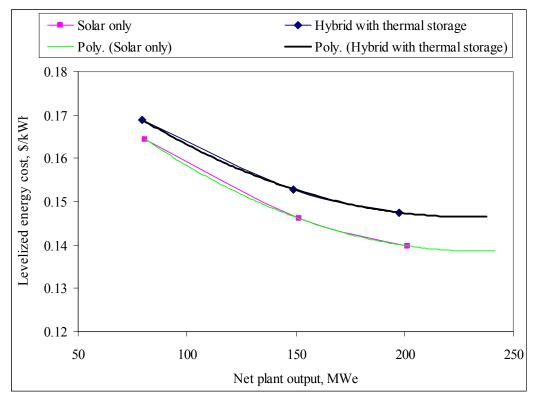


Figure 5 Levelized Energy Costs as a Function of Plant Capacity

7. Commercial Turbine-Generators

Large steam turbines are fabricated from standard frame sizes, with the mechanical output matched to the customer's needs by adjusting the lengths of the blades, and in some cases, the number of stages. A listing of commercial turbines in the size range of interest for large parabolic trough plants is shown in Table 9.

<u>Manufacturer</u> General Electric	<u>Model</u> D series	<u>Arrangement</u> Dual flow HP/IP with separate LP	Size range, MWe 125-375	Maximum steam <u>conditions</u> , lb _f /in ² -/ °F/ °F 2,400 / 1,050 / 1,050
Alstom	STF25	Separate HP with combined IP/LP	210-275	2,540 / 1,004 / 1,004
Siemens	SST-3000	Separate HP with combined IP/LP	90-250	2,560 / 1,110 / 1,110
Siemens	SST-5000	Dual flow HP/IP with separate LP	120-500	2,560 / 1,110 / 1,110

Table 9 Commercial Reheat Steam Turbine-Generator Capacities

On a conceptual level, the unit price for the turbine, in \$/kWe, should be the lowest at the upper end of the power level of a particular frame size. In essence, the fixed costs associated with the casing and the shaft could be distributed over the largest number of kilowatts. However, this situation does not seem to be borne out in commercial practice. Two senior cost engineers at Bechtel have yet to observe any discontinuous change in the cost of a turbine-generator as a function of size. The effect can, perhaps, be traced to commercial pricing considerations. For example, the upper end of the Alstom STF25 frame capacity is at about the mid-point of the General Electric D series frame capacity. For General Electric to offer a 250 MWe turbine-generator which is competitive with the Alstom design, the price from General Electric may need to be lower than the theoretical value. Correspondingly, at other power levels, Alstom may need to adjust their prices to remain competitive with General Electric.

In terms of Task 1, any potential step changes in the cost of the turbine-generator from moving from one frame size to the next is likely to have a minor influence on selection of the preferred plant size. The potential penalties or benefits to moving to a different frame size are muted by the ability to change to a different turbine vendor. Thus, discontinuities in the levelized energy cost as a function of plant size are more likely to be determined by plant components other than the turbine. This is discussed a little more fully in Section 9, Observations. Further, the unit cost for the turbine-generator is perhaps \$200/kWe. If a

5 percent advantage in the cost of the turbine-generator could be achieved by selecting a power output at the upper end of the frame size, the cost of energy from a plant with thermal storage could be reduced by approximately 0.25 percent. For a fully commercial industry, such as turn-key combined cycle power plants, such a cost advantage would be meaningful. However, for a maturing solar industry, which has yet to build a plant in the range of 150 to 250 MWe, the solutions to moving and storing very large quantities of Therminol and nitrate salt may be more expensive than anticipated. As such, the uncertainties in estimating the performance and the cost of large heat transport fluid and the thermal storage systems likely has as large an influence on the cost of energy as a step-change in the cost of the turbine.

8. Conceptual Cost Estimate

For the purposes of the study, a 250 MWe hybrid plant with 3 hours of thermal storage was selected as the design offering the lowest cost of energy. A conceptual capital cost estimate for the plant was developed from the following sources:

- Capital cost estimate from the conceptual design of a 100 MWe central receiver power plant developed for the Central Receiver Utility Studies. Equipment capacities and materials were modified to reflect the changes in the plant size (100 MWe to 250 MWe), the working fluid (nitrate salt to Therminol), and the peak working fluid temperature (1,050 °F to 735 °F).
- Capital cost estimate from the preliminary design of the 880 MWht thermal storage system at the 55 MWe AndaSol parabolic trough solar power plants in southern Spain
- AspenTech Icarus equipment and labor cost data base
- Bechtel cost estimating experience on similar power plant projects.

Heat Transport System Flow Diagram

With a gross plant rating of 265 MWe, a moderate Rankine cycle efficiency of 38 percent, and a limited temperature rise of 175 °F across the collector field, the volume flow rates of Therminol, nitrate salt, and steam within the plant were fairly large. As such, the flow rates and equipment capacities often required multiple equipment items, as outlined in Table 10.

A schematic heat transport fluid flow diagram is shown in Figure 6. The numbers in the circles are the nominal pipe diameters, in inches. Although not shown in the figure, a nitrogen supply and recovery system is also required for the thermal storage tank ullage.

Items Included in the Estimate

The estimate includes the direct and indirect material and labor costs required to construct the plant, together with the costs for engineering, procurement, construction management, startup, and checkout.

The estimate is arranged in the following system categories: Land; Structures and Improvements; Collector System; Thermal Storage System; Heat Transport Fluid System; Electric Power Generation System; and Master Control System. The system estimates are further divided into the following cost categories: C - Columns and Vessels; D - Tanks; E - Exchangers; G - Pumps and Drivers; K - Compressors and Drivers; T - Special Equipment; J - Instrumentation; P - Piping; M - Structural Steel; N - Insulation; P - Electrical; Q - Concrete Work; S - Sitework; and X - Painting.

Thermal Storage System	
Storage Tanks	
Height, ft	43
Diameter, ft	108
Cold tanks, each	3
Hot tanks, each	3
Oil-to-salt heat exchangers	
Area, ft ²	42,400
Number, each	24
Heat Transport Fluid System	
Heat transport fluid pumps	
Motor power, bhp	3,500
Number, each	6
HTF pump header diameter, in.	60
Expansion vessels	
Diameter, ft.	14
Length, ft.	59
Number, each	8
Steam generator, number of shells	
Preheater	2
Evaporator	4
Superheater	2
Reheater	4

Table 10 Multiple Equipment Items 250 MWe Plant with 3 Hours of Thermal Storage

Contingencies are included for each of the principal cost estimate categories. The contingencies are allowances for items which have not yet been identified at this stage of the design (for example, the support steel for the cable trays), but which are expected to have been identified at the completion of the final design. The monies in each of the contingencies are expected to be spent at the completion of the project; thus, the funds are not intended to cover additions to the project scope or cost overruns.

Items Excluded from the Estimate

Items for which estimates have not been developed include the following: 1) escalation in equipment prices and labor costs beyond the second quarter of 2005; 2) interest expenses during final design and construction; 3) owner's engineering and construction management; and 4) environmental impact statements.

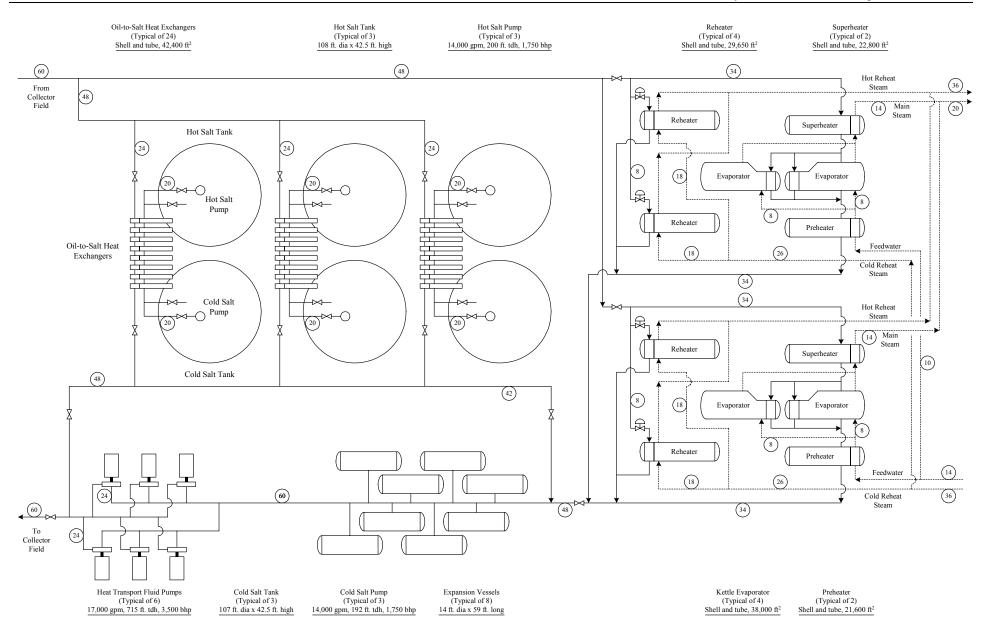


Figure 6 250 MWe Plant Heat Transport Fluid Flow Diagram

Labor Rates and Indirect Costs

Direct labor rates by craft, including payroll additives, for a generic site near a large metropolitan area in the Southwest United States were estimated as follows:

- Mechanical: \$38.13 / hr
- Civil: \$26.72 / hr
- Steel worker: \$38.32 / hr
- Pipe fitter: \$42.68 / hr
- Electrician: \$29.42 / hr
- Instrument technician: \$36.85 / hr

Equipment and material installation costs for items which are distributed among the craft hours were estimated as a percentage of the direct wage rates. These distributable costs included equipment rentals, welding supplies, construction utilities, labor for material handling, and labor for site clean-up. The distributable costs were estimated to be 84.5 percent of the direct labor costs. Thus, the total craft labor rates to the project were estimated as follows:

- Mechanical: \$70.35 / hr
- Civil: \$49.30 / hr
- Steel worker: \$70.70 / hr
- Pipe fitter: \$78.84 / hr
- Electrician: \$54.28 / hr
- Instrument technician: \$67.99 / hr

Single Line Diagrams

In support of the electric equipment and bulk materials estimates, single line diagrams were developed for the heat transport fluid system and the thermal storage system. The single line diagrams are shown in Figures 7 and 8.

Sales Tax

A sales tax of 7.4 percent is applied to all equipment and bulk material purchases. The tax consists of a state sales tax of 5.6 percent and a local sales tax of 1.8 percent.

Freight

An allowance for freight, equal to 4 percent of the equipment and materials cost, is included in the estimate.

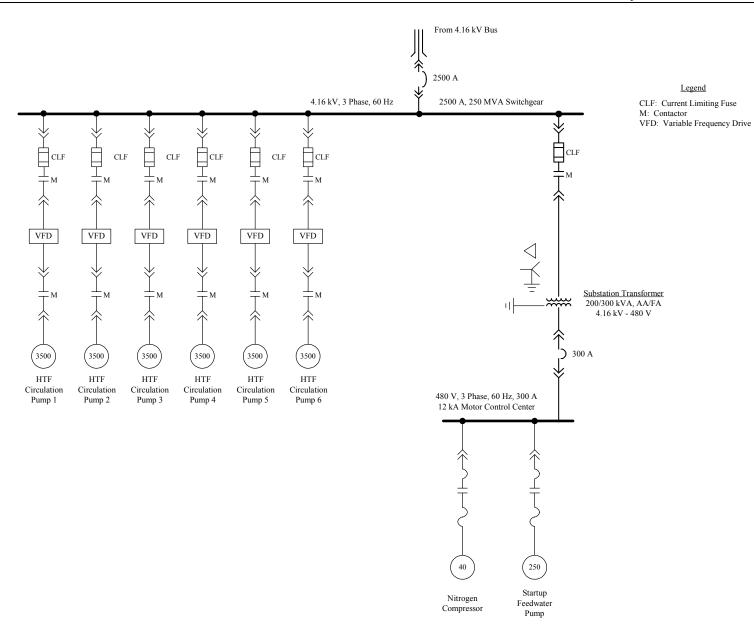


Figure 7 Heat Transport Fluid System - Single Line Diagram

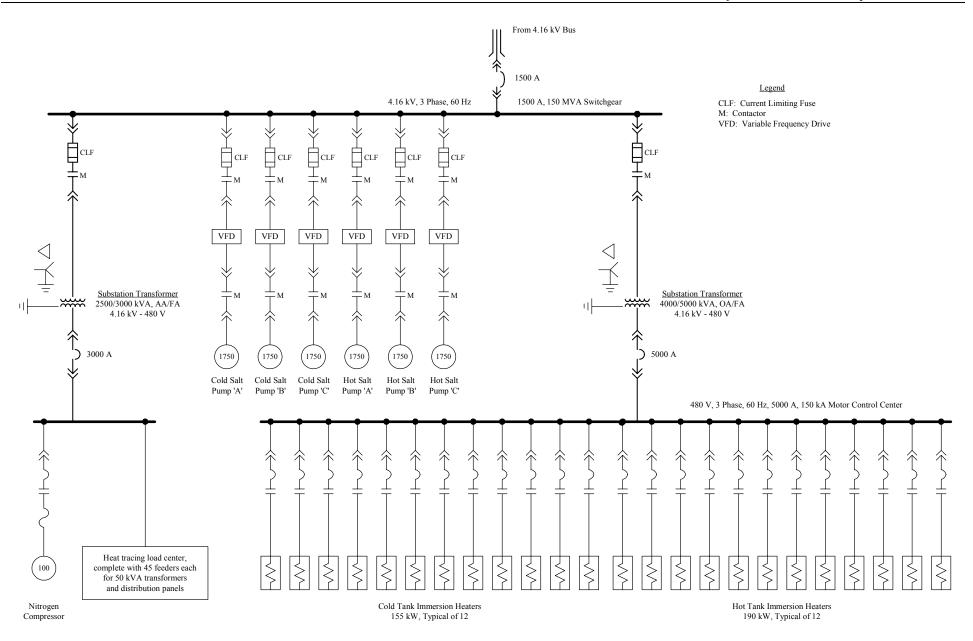


Figure 8 Thermal Storage System - Single Line Diagram

Escalation

The estimate was prepared using labor, equipment, and material costs current through the first quarter of 2004. Escalation from the first quarter of 2004 through the fourth quarter of 2005 was estimated to be 4.5 percent, based on cost indices prepared by Bechtel Corporation for current and planned refinery and chemical projects.

Contractor's Fee

The fee for the general contractor is assumed to be 3 percent of the total installed cost, including contingencies.

Cost Estimate Summary and Details

A summary of the overall estimate is shown in Table 11, and a breakdown of the total field costs by system category is shown in Table 12.

Table 11Estimate Summary4th Quarter 2005 Overnight Construction Costs250 MWe Plant with 3 Hours of Thermal Storage

Item	\$1,000	Contingency	\$1,000
Land	2,671	0%	2,671
Structures and Improvements	3,273	15%	3,763
Collector System	513,420	5%	539,091
Thermal Storage System	94,944	5%	99,691
Heat Transport Fluid System	60,173	10%	66,190
Electric Power Generation System	98,570	10%	108,428
Master Control System	2,270	15%	2,610
Total Field Cost	775,321	6%	822,445
Engineering, Procurement, and Home Office	12,750	15%	14,662
Construction Management and Field Procurement	5,005	15%	5,756
Startup and Checkout	2,296	15%	2,640
Contractor Fee (3 percent)	23,861	0%	23,861
	43,911	7%	46,919
Total Overnight Construction Cost	819,232	6%	869,363

Table 12 Total Field Cost Estimate Summary 4th Quarter 2005 Costs, Excluding Contingencies 250 MWe Plant with 3 Hours of Thermal Storage

	т 1	Structures and	Collector	Thermal	Heat	Electric Power	Master
C - Columns and Vessels	Land	Improvements	<u>System</u>	Storage	Transport	Generation	<u>Control</u>
				258,110	1,392,430	147,430	
D - Tanks				10,756,506	21 ((2.1(0	1,366,660	
E - Exchangers				11,291,780	21,662,160	9,025,360	
G - Pumps and Drives				12,664,020	10,406,390	2,325,010	
K - Compressors and Drivers				92,300	19,360	337,950	
T - Special Equipment	2,671,050		513,420,000	31,641,402	15,404,070	54,467,900	2,121,560
J - Instrumentation				841,462	456,498		
L - Piping				4,170,970	2,545,650	11,639,382	
M - Structural Steel				1,461,180	157,080	210,630	
N - Insulation				7,876,460	3,296,310	862,674	
P - Electrical				4,371,827	931,029	10,722,693	
Q - Concrete Work				2,160,343	632,286	1,473,553	
S - Site Work		3,262,560		2,735,771	32,731	341,972	
X - Painting				27,597	7,840		
Subtotal	2,671,050	3,262,560	513,420,000	90,349,727	56,943,835	92,921,214	2,121,560
Sales Tax	0	10,027	0	4,594,502	3,229,077	5,649,268	148,000
Total Field Cost	2,671,050	3,272,587	513,420,000	94,944,229	60,172,911	98,570,481	2,269,560

Details of the system estimate are shown in Appendix 1. The labor, equipment, and material costs reflect fourth quarter 2005 prices.

The labor costs include both the direct and the distributable costs.

9. Observations

Annual Plant Availability

Multiple equipment items in the heat transport fluid system should improve the annual plant reliability. For example, maintenance could be conducted on one steam generator train during the winter. Although main steam production would be reduced by 50 percent, the availability of thermal storage should allow the daily energy output to remain nearly constant. However, multiple equipment items can have a detrimental effect on the plant availability. Although tanks, pumps, and heat exchangers are normally quite reliable, the supporting equipment, such as valve actuators, instruments, and sensors, can be problematic. As such, the additional support equipment brings additional failure modes.

The effect of multiple equipment items on the plant availability, although anticipated to be small, is not yet incorporated in the results of Section 5, Annual Energy Calculations.

Upper Limits on Plant Sizes

<u>Therminol Heat Transport Fluid</u> For plants with thermal storage, a capacity of 200 MWe is likely the upper limit for the most economic plant. The requirement for multiple equipment items in both the thermal storage and the heat transport fluid systems, together with Rankine cycle efficiencies approaching an asymptotic limit of about 38 percent, imply that larger plant sizes will not offer further reductions in the unit capital cost.

For plants without thermal storage, the largest economic plant size is probably 250 MWe. At this capacity, all of the economies of scale in the heat transport fluid system have been realized, and the Rankine cycle efficiency has likely reached its peak value.

<u>Inorganic Heat Transport Fluids</u> For this study, analyses were not conducted for designs based on inorganic heat transport fluids. However, the higher collector field outlet temperatures available with the inorganic fluids, together with the availability of direct, two-tank thermal storage systems, considerably reduces the volumes of fluids which must be circulated and stored. As such, the plant capacities at which equipment economies of scale are no longer available should be higher than the plants using Therminol. On a conceptual level, the upper limit on the plant capacities may be in the range of 250 to 300 MWe for plants with thermal storage, and perhaps 350 MWe for plants without storage.

Appendix 1 Details of 250 MWe Plant Total Field Cost Estimate 250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 1)

				Unit C	ost	Labor	MH	Total		\$		
Code	Description	Qty	Unit ===	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total =======
0	LAND	1,336	AC		2,000						2,671,050	2,671,050
1	STRUCTURES AND IMPROVEMENTS											
1	SITE IMPROVEMENTS											
	Clear and Grub	1,048	AC		652						683,850	683,850
	Roads - Grading	25,600	SY		0.54						13,920	13,920
	Roads - 8 in. base	4,200	CY		13.05						54,790	54,790
	Roads - 3 in. asphalt	16,700	SY		6.52						108,930	108,930
	Roads - 6 ft. shoulders	7,200	SY		4.35						31,310	31,310
	Roads - Oil only	1,800	SY		0.54						980	980
	Railroad Spur	0	LF		81.54						0	(
	Site Fences	28,500	LF		13.05						371,810	371,810
	Evaporation Pond - Grading	49,300	SY		0.54						26,800	26,800
	Evaporation Pond - Excavation	10,500	CY		2.17						22,830	22,830
	Evaporation Pond - Clay Lining	36,400	CY		10.87						395,720	395,720
2	PIPING											
	Yard Piping - Excavation	15,000	CY		2.72						40,770	40,770
	Yard Piping - Back Fill	15,000	CY		5.44						81,540	81,540
	Domestic Water	1,300	LF			42.68	0.88	1,145	12,600	85,760		98,360
	Fire Protection	3,700	LF			42.68	0.88	3,256	53,800	243,870		297,670
	Primary Water Treatment	440	LF			42.68	1.56	687	13,100	51,460		64,560
	Raw Water	5,050	LF			42.68	0.57	2,882	49,000	215,860		264,860
	Sanitary Sewer and Drains	1,500	LF			42.68	0.55	825	7,000	61,790		68,790
3	MAINTENANCE / WAREHOUSE BUILDING	6,000	SF		54						326,140	326,140
4	CONTROL / ELECTRICAL / ADMINISTRATION BUILDING	4,000	SF		98						391,370	391,370
5	SECURITY / GATEHOUSE	150	SF		109						16,310	16,310
	Subtotal - Structures and Improvements								 135,500	 658,740	 2,567,070	 3,361,310
	Sales Tax								10,027			
1	TOTAL - STRUCTURES AND IMPROVEMENTS								145,527	658,740	 2,567,070	3,371,337
2	COLLECTOR SYSTEM											
1	COLLECTOR SYSTEM - 1,990,000 m ² ; COMPLETE INCLUDING FOUNDATIONS & FIELD WIRING	1,990,000	M^2		258						513,420,000	513,420,000

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 2)

				Unit C	ost	Labor	MH	Total		\$		
Code	Description	Qty ====	Unit	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total =======
4	THERMAL STORAGE SYSTEM											
С	COLUMNS AND VESSELS											
1	Nitrogen Storage Vessel Horizontal, cylindrical tank, ASTM A 516, Grade 70, carbon steel 14 ft diameter, 51 ft long, 35 psig design pressure 0.25 in. wall thickness, 27,000 lb vessel mass	3	EA	73,383		38.13	220	660	220,150	46,430		266,580
D	TANKS											
1	Cold Salt Storage Tank Vertical cylindrical tank, self supporting roof, atmospheric pressure 102 ft diameter x 46 ft height, ASTM A 516, Grade 70, carbon steel 710,000 lb approximate weight	3	EA		1,804,668						5,414,003	5,414,003
2	Hot Salt Storage Tank Vertical cylindrical tank, self supporting roof, atmospheric pressure 104 ft diameter x 46 ft height, ASTM A 516, Grade 70, carbon steel 750,000 lb approximate weight	3	EA		1,924,254						5,772,763	5,772,763
	Subtotal - Tanks										11,186,766	11,186,766
E	HEAT EXCHANGERS											
1	Oil-to-Salt Heat Exchangers Straight shell, U-tube, 42,400 ft ² heat transfer area each Carbon steel shell, tubes, tubesheet, and channel 170,000 lb empty weight each, Cost from Heat Transfer Consultants	24	EA	460,951		38.13	385	9,240	11,062,830	650,030		11,712,860
2	Nitrogen-to-Air Heat Exchanger Finned tube, forced draft heat exchanger 50 ft ² bare tube area, 650 ft ² finned tube area, 0.75 bhp electric fan	1	EA	2,174		38.13	33	33	2,170	2,320		4,490
	Subtotal - Heat Exchangers								11,065,000	652,350		11,717,350
G	PUMPS AND DRIVERS											
1	Cold Salt Pumps Extended shaft turbine pump, 2 stages 14,000 gpm, 3705 D _m /sec, 192 ft total developed head 1750 bhp motor variable speed drive	3	EA	2,044,928		38.13	418	1,254	6,134,780	88,220		6,223,000
2	Hot Salt Pumps Extended shaft turbine pump, 2 stages 14,400 gpm, 3705 Ibm/sec, 200 ft total developed head 1750 bhp motor variable speed drive	3	EA	2,044,928		38.13	418	1,254	6,134,780	88,220		6,223,000

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 3)

				Unit C	ost	Labor	MH	Total		\$		
Code	Description	Qty ====	Unit	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total =======
3	Spare Pump and Motor (without variable speed drive) Extended shaft turbine pump, 2 stages 3705 Ibm/sec, 200 ft total developed head, 1750 bhp electric motor	1	EA	717,519		38.13	0	0	717,520	0		717,520
	Subtotal - Pumps and Drivers								12,987,080	176,440		13,163,520
к	COMPRESSORS AND DRIVERS											
1	Nitrogen Compressor 2 stage, positive displacement, with intercooler 132 actual ft ³ /min outlet, 12 psia inlet / 50 psia outlet pressures 77,000 ft total developed head, 100 bhp motor variable speed drive	1	EA	54,357		38.13	569	569	54,360	40,030		94,390
Т	SPECIAL EQUIPMENT											
1	Nitrate Salt Inventory \$0.20/1b for salt mixture, delivered \$0.025/1b for handling, melting, and loading the inventory	133,000,000	LB	0.22	0.027				28,918,170		3,614,771	32,532,941
2	Maintenance Crane 15 ton capacity, 10 ft span	3	EA	105,562		38.13	262	785	316,690	55,220		371,910
	Subtotal - Special Equipment								29,234,860	55,220	3,614,771	32,904,851
J	INSTRUMENTATION											
1	Storage Tank Level Transmitters Sitrans LC500 capacitance detectors	б	EA	1,500		36.85	19.8	119	9,002	8,220		17,22
2	Salt Pump Discharge Flow Meters Venturi flow meters with Kaman KD-1911 impedance pressure transducers	б	EA	19,862		36.85	26.4	158	119,173	10,910		130,083
3	Salt Pump Discharge Pressure Transmitters Kaman KD-1911 impedance transducers	6	EA	8,991		36.85	26.4	158	53,944	10,910		64,854
4	Inter-tank Ullage Line Pressure Transmitter Kaman KD-1911 impedance transducer	2	EA	8,991		36.85	26.4	53	17,981	3,660		21,64
5	Nitrogen Storage Tank Pressure Yokogawa EJA510A transmitter	1	EA	1,413		36.85	19.8	20	1,413	1,380		2,793
6	Nitrate Salt Pipe Temperatures Type K thermocouple, located in carbon steel thermowell Industrial protection head assembly With A/D converter/transmitter	27	EA	721		36.85	25.3	683	19,461	47,170		66,63

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 4)

				Unit Co	st	Labor	MH	Total		\$ -		
Code	Description	Qty	Unit	Material	S/C	\$ Rate =====	Rate	MH	Material	Labor ======	S/C	Total
7	Therminol Pipe Temperatures Type K thermocouple, located in carbon steel thermowell Industrial protection head assembly With A/D converter/transmitter	27	EA	721		36.85	25.3	683	 19,461	47,170		66,631
8	Storage Tank Inventory Temperatures Type K thermocouple, Type 304 stainless steel braided sheath Ceramic insulation, suitable for immersion; with transmitter With A/D converter/transmitter	48	EA	656		36.85	25.3	1,214	31,466	83,850		115,316
9	Nitrogen Line Temperatures Type K thermocouple, Type 304 stainless steel braided sheath Ceramic insulation, with washer tab for pipe attachment With A/D converter/transmitter	2	EA	656		36.85	25.3	51	1,311	3,520		4,831
10	I / P Transducers with Air Filter / Regulators	36	EA	646					23,248			23,248
11	Fiber Optic Data Highway Fiber optic cable Fiber optic cable terminations 1 in. rigid steel conduit	1,000 12 1,000	FT EA FT	5.89 412 1.69		36.85 36.85 36.85	0.06 28 0.23	55 330 234	5,892 4,944 1,685	3,800 22,790 16,180		9,692 27,734 17,865
12	Pneumatic Tubing	2,400	FT	0.38		36.85	0.055	132	913	9,120		10,033
13	Raceway for Pneumatic Tubing	600	FT	1.36		36.85	0.165	99	815	6,840		7,655
14	Instrument Air Subheader	2,000	FT	4.35		36.85	0.55	1,100	8,697	75,980		84,677
15	Thermocouple Low Energy Process Interface Unit	2	EA	21,634		36.85	44	88	43,269	6,080		49,349
16	Loop Check	300	EA			36.85	2.75	825		56,980		56,980
17	Calibration and Testing	210	EA			36.85	2.97	624		43,100		43,100
18	Operator Station (in control room, provided by others)	1	LT		36,477						36,477	36,477
	Subtotal - Instrumentation								 362,677	457,660	36,477	 856,814

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 5)

				Unit C	ost	Labor	MH	Total		\$		
Code	Description	Qty	Unit	Material	S/C	\$ Rate	Rate	MH	Material	Labor	S/C	Total
L	 <u>PIPING</u>											
1	Pipe and Fittings: Therminol and Nitrate Salt											
1	48" Pipe - Carbon steel A106 Grade B, XS (Therminol hot header)	430	LF	438		42.68	3.20	1,376	188,530	103,060		291,5
	43 Fipe - Carbon steel A106 Grade B, X3 (Therminol hot header) 42" Pipe - Carbon steel A106 Grade B, Std wall (Therminol cold header)	430	LF	438		42.08 42.68	2.80	1,370	188,550	83,890		291,5 199,1
	24" Pipe - Carbon steel A106 Grade B, SKI wan (Therminol to/from exchangers)	1,650	LF	200		42.68	2.80	3,432	357,910	257,060		614,9
	20" Pipe - Carbon steel A106 Grade B, XS (Vitrate salt)	900	LF	180		42.68	1.87	1,683	162,000	126,060		288,0
	3" Pipe - Carbon steel A106 Grade B, Sch 40 (Nitrate sait)	900	LF	130		42.68	0.70	630	102,000	47,190		200,0
	8" Pipe - Carbon steel A106 Grade B, Sch 20 (Tank ullage)	600	LF	39		42.68	1.12	672	23,190	47,190 50,330		73,
	8" Pipe - Carbon steel A106 Grade B, Sch 20 (Fank diage) 8" Pipe - Carbon steel A106 Grade B, Sch 20 (Foundation cooling)	9.000	LF	16		42.68	1.12	10,080	142,210	754,990		, s, 897,
	2" Pipe - Carbon steel A106 Grade B, Sch 20 (Foundation Cooling) 2" Pipe - Carbon steel A106 Grade B, Sch 80 (Nitrogen recovery / supply)	9,000 900	LF	9		42.68	0.70	10,080 630	7,810	, 54,990 47,190		
2	Pipe Welds											
4	48" Pipe - Carbon steel A106 Grade B, XS (Therminol hot header)	54	EA			42.68	53.76	2,890		216,460		216,
	42" Pipe - Carbon steel A106 Grade B, Std wall (Therminol cold header)	50	EA			42.68	16.00	800		59,920		59,
	24" Pipe - Carbon steel A106 Grade B, XS (Therminol to/from exchangers)	206	EA			42.68	8.82	1,819		136,240		136.
	20" Pipe - Carbon steel A106 Grade B, XS (Nitrate salt)	113	EA			42.68	7.49	843		63,140		63
	3" Pipe - Carbon steel A106 Grade B, Sch 40 (Nitrate salt drain)	180	EA			42.68	1.60	288		21,570		21
	8" Pipe - Carbon steel A106 Grade B, Sch 20 (Tank ullage)	60	EA			42.68	3.15	189		14,160		14
	8" Pipe - Carbon steel A106 Grade B, Sch 20 (Foundation cooling)	600	EA			42.68	3.15	1,890		141,560		141
	2" Pipe - Carbon steel A106 Grade B, Sch 80 (Nitrogen recovery / supply)	180	EA			42.68	1.60	288		21,570		21,
3	Valves											
	20 in. gate, carbon steel, 150 lb class, motor operated, bellows seal (Salt isolation)	12	EA	6,692					80,310			80,
	24 in. gate, carbon steel, 150 lb class, motor operated (Therminol isolation)	6	EA	9,850					59,100			59,
	2 in. gate, carbon steel, 900 lb class, manual (Nitrogen isolation)	3	EA	1,123					3,370			3,
	3 in. gate, carbon steel, 150 lb class, air operated, bellows seal (Salt vent / drain)	15	EA	446					6,690			-, 6,
	8 in. globe valve, carbon steel, 300 lb class, air operated (Therminol attemperation)	3	EA	3,729					11,190			11.
	8 in. globe valve, carbon steel, 150 lb class, air operated (Therminol startup)	3	EA	3,271					9,810			9.
	4 in. relief valve, carbon steel, 150 lb class (Tank pressure / vacuum)	6	EA	652					3,910			3,
	2 in. relief valve, carbon steel, 150 lb class (Nitrogen storage vessel relief)	1	EA	652					650			_,
	2 in. pressure regulating valve, carbon steel, 300 lb class (Nitrogen supply)	1		1,200					1,200			1,
4	Miscellaneous Piping Items and Operations											
	Hangers and supports (20% of installation manhours; \$4/ft for material)	1	LT	59,120		42.68		5,726	59,120	428,880		488,
	Waste allowance (10% of piping material)	1	LT	100,871					100,870			100,
	Testing and inspection (7.5% of installation manhours)	1	LT			42.68		2,147		160,830		160,
	Material handling (5% of installation manhours)	1	LT			42.68		1,432		107,220		107
	Freight (3% of material)	1	LT	35,548				, -	35,550	,		35
	Subtotal - Piping								 1,380,480	 2,841,320		

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 6)

		_		Unit Cost	Labor	MH	Total		\$		
Code	Description	Qty ====	Unit ===	Material S/C ======= =====	\$ Rate =====	Rate =====	MH =====	Material	Labor ======	S/C ======	Total =======
М	STRUCTURAL STEEL										
	Heavy steel (elevated platform)	372	Т	1,468	38.32	11	4,089	545,570	288,440		834,010
	Light structural steel	57	Т	1,957	38.32	44	2,526	112,360	178,180		290,54
	Deck plate	2,200	SF	38	38.32	1.43	3,146	84,190	221,920		306,11
	Stair tower	540	LF	67	38.32	0.64	345	36,100	24,340		60,44
	Subtotal - Structural Steel							778,220	712,880		1,491,10
N	INSULATION										
1	Tanks										
	Cold tank - 12 in. calcium silicate and mineral wool	68,700	ESF	23	42.68	0.21	14,427	1,551,750	1,080,580		2,632,33
	Hot tank - 14 in. calcium silicate and mineral wool	70,600	ESF	24	42.68	0.21	14,826	1,701,370	1,110,470		2,811,84
2	Heat Exchangers	21,700	ESF	17	42.68	0.91	19,754	373,750	1,164,300		1,538,05
	8 in. calcium silicate block with aluminum jacket										
3	Piping: Stainless steel foil jacket; 25 mm mineral fiber blanket; calcium silicate block insulation; outer aluminum jacket										
	48" pipe, 6 in. thick, 1.1 fitting factor (Therminol hot header)	473	ELF	202	42.68	2.36	1,118	95,570	65,890		161,46
	42" Pipe, 4 in. thick, 1.1 fitting factor (Therminol cold header)	440	ELF	118	42.68	1.73	761	51,720	44,850		96,57
	24" Pipe, 6 in. thick, 1.1 fitting factor (Therminol to/from exchangers)	1,815	ELF	117	42.68	1.33	2,419	213,240	142,580		355,82
	20" Pipe, 6 in. thick, 1.1 fitting factor (Nitrate salt)	990	ELF	103	42.68	1.16	1,144	102,040	67,430		169,47
	3" Pipe, 4 in. thick, 1.5 fitting factor (Nitrate salt drain)	1,350	ELF	21	42.68	0.41	552	28,400	32,530		60,93
	8" Pipe, 4 in. thick, 1.1 fitting factor (Tank ullage)	660	ELF	34	42.68	0.56	369	22,440	21,750		44,19
	2" Pipe, 2 in. thick, 1.1 fitting factor (Nitrogen recovery / supply)	9,900	ELF	6	42.68	0.18	1,823	59,900	107,450		167,35
	Subtotal - Insulation							4,200,180	3,837,830	0	8,038,01
Ρ	ELECTRICAL										
1	Power Distribution										
	Substation transformer, 4000 / 5000 kVA, 4.16 kV - 480 V, OA / FA (480 V power to tank immersion heaters)	1	EA	81,536	29.42	363	363	81,536	22,380		103,91
	Substation transformer, 2500 / 3000 kVA, 4.16 kV - 480 V, AA / FA	1	EA	54,357	29.42	363	363	54,357	22,380		76,73
	(480 V power to heat trace circuits and nitrogen compressor)										
	Heat trace power transformers, 50 kVA, 480 V - 50 V, AA	45	EA	2,718	29.42	28	1,238	122,304	76,280		198,58
	480 V motor control center	3	LT	98,278	29.42	286	858	294,835	52,890		347,72
	150 A combination starters for heat trace circuits	16	EA	Included in MCC price							
	400 A combination starters for cold tank immersion heaters	4	EA	Included in MCC price							
	400 A combination starters for hot tank immersion heaters	4	EA	Included in MCC price							
	Size 3 combination starters	4		Included in MCC price							
	4.16 kV switchgear, 1500 A main breaker, 8 each current limiting fuses	1	LT	141,329	29.42	264	264	141,329	16,270		157,59
	and contactors (6 salt pump contactors + 2 substation contactor)										
	480 V switchgear, 5000 A main breaker and transition section to MCC	1	LT	65,229	29.42	77	77	65,229	4,750		69,97
	480 V switchgear, 3000 A main breaker and transition section to MCC	1	LT	43,486	29.42	77	77	43,486	4,750		48,23
	480 V disconnect switches, 100 A	48	EA	506	29.42	6	264	24,265	16,270		40,53
	Distribution transformer, 45 kVA, 480 V - 240 V	3	EA		29.42	28	83	6,523	5,090		11,613

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 7)

				Unit Co	ost	Labor	MH	Total		\$		
Code	Description	Qty	Unit	Material	S/C	\$ Rate	Rate	MH	Material	Labor	S/C	Total
	Heat trace power distribution panel	45	EA	2,718		29.42	33	1,485	122,304	91,540		213,844
	Lighting panel; 42 circuits	3	EA	1,712		29.42	33	99	5,137	6,100		11,237
	480 V disconnect switches, 30 A	3	EA	228		29.42	6	17	685	1,020		1,705
	Start / stop switches	30	EA	250		29.42	11	330	7,501	20,340		27,841
	Variable frequency drive (installation only)	7	EA	109		29.42	66	462	761	28,480		29,241
2	Storage Tank Immersion Heaters											
	Cold tank - 155 kW, 3 phase, 480 V, 190 A	12	EA	4,349		29.42	55	660	52,180	40,680		92,860
	Hot tank - 190 kW, 3 phase, 480 V, 230 A	12	EA	5,436		29.42	55	660	65,230	40,680		105,910
	Silicon controlled recitifier control packages	24	EA	217		29.42	22	528	5,218	32,550		37,768
3	Electric Heat Tracing											
	48" pipe, 14 active and 2 spare cables (Therminol hot header)	430	FT	80		29.42	0.18	76	34,197	4,660		38,857
	42" Pipe, 12 active and 2 spare cables (Therminol cold header)	400	FT	70		29.42	0.18	70	27,835	4,330		32,165
	24" Pipe, 6 active and 2 spare cables (Therminol to/from exchangers)	1,650	FT	40		29.42	0.18	290	65,610	17,880		83,490
	20" Pipe, 5 active and 2 spare cables (Nitrate salt)	900	FT	35		29.42	0.18	158	31,314	9,750		41,064
	3" Pipe, 1 active and 2 spare cables (Nitrate salt drain)	900	FT	15		29.42	0.18	158	13,420	9,750		23,170
	8" Pipe, 2 active and 2 spare cables (Tank ullage)	600	FT	20		29.42	0.18	105	11,929	6,500		18,429
	2" Pipe, 1 active and 1 spare cable (Nitrogen recovery / supply)	900	FT	10		29.42	0.18	158	8,947	9,750		18,697
	20 in. gate, 2 active and 2 spare cables, bellows seal (Salt isolation)	12	EA	261		29.42	22	264	3,131	16,270		19,401
	24 in. gate, 1 active and 1 spare cable (Therminol isolation)	6	EA	130		29.42	11	66	783	4,070		4,853
	2 in. gate, 0 cables (Nitrogen isolation)	3	EA	0		29.42	0	0	0	0		0
	3 in. gate, 2 active and 0 spare cables, bellows seal (Salt vent / drain)	15	EA	130		29.42	11	165	1,957	10,170		12,127
	8 in. globe valve, 1 active and 1 spare cable (Therminol attemperation)	3	EA	130		29.42	11	33	391	2,030		2,421
	8 in. globe valve, 1 active and 1 spare cable (Therminol startup)	3	EA	130		29.42	11	33	391	2,030		2,421
	4 in. relief valve, 1 active and 0 spare cables (Tank pressure / vacuum)	6	EA	65		29.42	6	33	391	2,030		2,421
	2 in. relief valve, 0 cables (Nitrogen storage vessel relief)	1	EA	0		29.42	0	0	0	0		0
	2 in. pressure regulating valve, 0 cables (Nitrogen supply)	1	EA	0		29.42	0	0	0	0		0
	Nitrate salt pump transition to top of salt tank	6	EA	652		29.42	22	132	3,914	8,140		12,054
	Heat exchangers; 28 active cables and 2 spare cables, each 45 ft. long	24	EA	6,751		29.42	44	1,056	162,029	65,090		227,119
	¾ in. rigid steel conduit	17,700	FT	2.05		29.42	0.20	3,549	36,312	218,750		255,062
	Electric power distribution cable, 6 gauge	123,900	FΤ	0.23		29.42	0.014	1,678	28,287	103,420		131,707
4	Lighting											
	Stanchions - 35 ft. poles	48	EA	1,383		29.42	15.8	759	66,377	46,780		113,157
	Pendant lights	30	EA	550		29.42	1.9	58	16,503	3,580		20,083
	Staircase lighting	15	EA	326		29.42	4.6	69	4,892	4,240		9,132
	Receptacles	6	EA	17		29.42	2.1	13	104	770		874
	Photocell .	1	EA	130		29.42	1.8	2	130	110		240
	Lighting contactor	3	EA	478		29.42	9.2	28	1,435	1,700		3,135
	Junction boxes	3	EA	88		29.42	13.8	41	264	2,540		2,804
	Panelboards	3	EA	978		29.42	24.8	74	2,935	4,580		7,515
	¾ in. rigid steel conduit	11,000	FT	2.05		29.42	0.20	2,205	22,567	135,940		158,507
	2 conductor, 12 gauge wire	22,000	FT	0.15		29.42	0.0033	73	3,348	4,480		7,828
5	Welding Receptacle	3	EA	575		29.42	3	10	1,730	620		2,350

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 8)

				Unit Cos	st	Labor	MH	Total		\$		
Code	Description	Qty	Unit ===	Material	S/C	\$ Rate	Rate	MH	Material	Labor ======	S/C	Total
 6	Communication Stations	====										
	GAI-Tronics page/party station	6	EA	1,098		29.42	8.80	53	6,588	3,250		9,838
	Hom	6	EA	245		29.42	4.40	26	1,468	1,630		3,098
	U bracket for horn	6	EA	76					457			457
	5 party line cable	1,980	FT	2.99		29.42	0.08	157	5,920	9,670		15,590
	Single line cable	1,980	FT	0.54		29.42	0.03	61	1,076	3,760		4,836
	¾ in. rigid steel conduit	480	FT	2.05		29.42	0.20	96	985	5,930		6,915
7	Fire / Smoke Detectors											
	Emergency shutdown stations	6	EA	82		29.42	2.20	13	489	810		1,299
	Photoelectric smoke detectors	24	EA	163		29.42	2.20	53	3,914	3,250		7,164
	Thermal detectors	24	EA	163		29.42	2.20	53	3,914	3,250		7,164
	Strobe light and horn	6	EA	109		29.42	2.20	13	652	810		1,462
	Electric wire, 16 gauge	1,650	FT	0.15		29.42	0.010	16	251	1,010		1,261
	¾ in. rigid steel conduit	1,650	FT	2.05		29.42	0.20	331	3,385	20,390		23,775
	Terminal box	3	EA	435		29.42	5.50	17	1,305	1,020		2,325
8	Instrument Conduit											
	¾ in. rigid steel conduit	11,500	FT	2.05		29.42	0.20	2,306	23,592	142,120		165,712
	Terminations	460	EA	15.21		29.42	0.55	253	6,996	15,590		22,586
	Instrument wiring	13,800	FT	1.11		29.42	0.012	168	15,303	10,390		25,693
9	Cable Trays											
	12 in. power cable tray	1,440	FΤ	11		29.42	0.29	423	15,404	26,070		41,474
	12 in. instrument cable tray	1,980	FΤ	11		29.42	0.29	582	21,181	35,850		57,031
	24 in. 4.16 kV power cable tray	1,980	FΤ	12		29.42	0.41	821	23,743	50,610		74,353
	36 in. power cable tray	1,980	FΤ	16		29.42	0.57	1,128	31,987	69,540		101,527
	Tray covers	7,380	FΤ	Included		29.42	0.00	0	0	0		0
	Support columns	99	EA	326		29.42	33.0	3,267	32,288	201,380		233,668
	Support sleepers	72	EA	109		29.42	5.5	396	7,827	24,410		32,237
10	Wire and Cable											
	<u>4.16 kV</u>											
	3 conductor, 0000 gauge	4,500	FT	3.60		29.42	0.017	76	16,193	4,690		20,883
	Terminations 480 V	90	ΕA	1.75		29.42	0.130	12	158	720		878
	3 conductor, 12 gauge	13,860	FT	0.15		29.42	0.003	46	2,110	2,820		4,930
	3 conductor, 4 gauge	11,880	FT	0.34		29.42	0.006	74	4,004	4,560		8,564
	3 conductor, 0 gauge	30,600	FT	0.78		29.42	0.011	328	23,952	20,190		44,142
	3 conductor, 0000 gauge	19,200	FT	1.42		29.42	0.016	309	27,344	19,050		46,394
	Terminations	1,320	EA	1.16		29.42	0.099	131	1,535	8,060		9,595
	Control and instrument	,										
	7 conductor, 14 gauge	17,820	FT	1.59		29.42	0.015	274	28,285	16,920		45,205
	Twisted pair, 16 gauge	3,600	FT	1.11		29.42	0.012	44	3,992	2,710		6,702
	Twisted pair, 16 gauge, thermocouple	9,000	FT	1.11		29.42	0.012	110	9,980	6,770		16,750
	25 pair, 16 gauge	7,920	FT	7.89		29.42	0.052	410	62,510	25,290		87,800
	25 conductor, 14 gauge	5,400	FT	4.13		29.42	0.034	184	22,308	11,350		33,658
	Terminations	4,206	EA	15.21		29.42	0.550	2,313	63,970	142,590		206,560
				- 34 -								

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 9)

				Unit C	ost	Labor	MH	Total		\$		
Code	Description	Qty ====	Unit ===	Material ======	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total =======
	Termination boxes	12	EA	435		29.42	11.0	132	5,218	 8,140		13,358
	Armored cable connections	150	EA	54		29.42	1.1	165	8,154	10,170		18,324
11	Cathodic Protection											
	Graphite anodes											
	Drilling	100	LF			29.42	0.89	89		5,490		5,490
	Anodes	10	EA	500		29.42	6.2	62	5,000	3,820		8,820
	Junction box	1	EA	819		29.42	7.1	7	820	440		1,260
	Rectifier	1	EA	6,255		29.42	154	154	6,260	9,490		15,750
	Test station	2	EA	76		29.42	1.83	4	150	230		380
	Reference cell	2	EA	54		29.42	4.58	9	110	570		680
	Electric cable, 3 conductor, armored, underground											
	6 gauge	300	FT	1.02		29.42	0.31	92	310	5,700		6,010
	8 gauge	240	FT	0.66		29.42	0.31	74	160	4,560		4,720
12	Grounding											
	Tanks and structural steel											
	1 conductor, 00 gauge, bare cable	4,650	FT	1.59		29.42	0.275	1,278	7,378	78,790		86,168
	Cadwelds	60	EA	11		29.42	1.26	75	650	4,650		5,300
	Grounding rods	30	EA	33		29.42	2.2	66	980	4,070		5,050
	Substation transformer											
	1 conductor, 00 gauge, bare cable	250	FT	1.59		29.42	0.275	69	397	4,240		4,637
	Cadwelds	24	ΕA	11		29.42	1.26	30	260	1,860		2,120
	Pipe rack											
	1 conductor, 00 gauge, bare cable	990	FT	1.59		29.42	0.275	272	1,571	16,790		18,361
	Cadwelds	108	EA	11		29.42	1.26	136	1,170	8,370		9,540
	Grounding rods	18	EA	33		29.42	2.2	40	590	2,440		3,030
	Mechanical equipment											
	Nitrate salt pumps	6	EA	11		29.42	1.10	7	70	410		480
	Motor operated valves	18	EA	11		29.42	1.10	20	200	1,220		1,420
	Heat exchangers	24	EA	11		29.42	1.10	26	260	1,630		1,890
	Nitrogen storage tank	1	EA	11		29.42	1.10	1	10	70		80
	Nitrogen cooler	1	EA	11		29.42	1.10	1	10	70		80
	Nitrogen compressor	1	EA	11		29.42	1.10	1	10	70		80
	1 conductor, 00 gauge, bare cable	440	FT	1.59		29.42	0.169	75	698	4,590		5,288
	1 conductor, 2 gauge, bare cable	530	FT	1.09		29.42	0.169	90	576	5,530		6,106
	Lighting protection for elevated platform	820	FT	3.26		29.42	0.169	139	2,674	8,560		11,234
13	Testing	1	LT	5,436		29.42	263	263	5,436	16,210		21,646
	Subtotal - Electrical								 2,168,192	 2,287,050		4,455,242

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 10)

				Unit Co		Labor	MH	Total		\$		
Code	Description	Qty	Unit ===	Material	S/C	\$ Rate	Rate =====	MH =====	Material	Labor ======	S/C	Total
Q	CONCRETE WORK											
1	Elevated Platforms											
	Formwork	8,130	SF	1.63		26.72	0.39	3,130	13,258	184,480		197,73
	Reinforcing steel	163	Т	870		26.72	22	3,577	141,416	210,840		352,25
	Concrete Embedded metals	1,626 8,130	CY LB	92 1.63		26.72 26.72	1.65 w/ forms	2,683	150,285 13,258	158,130		308,41: 13,25
_		0,120	22	1.02		10.71	in round		10,200			
2	Tank Foundations	4,034	SF	1.63		26.72	0.39	1,553	6,578	91,530		98,10
	Formwork	4,034	SF T	1.63		26.72 26.72	22	6,594	,	91,530 388,660		
	Reinforcing steel Concrete	2,997	CY	870 92		26.72 26.72	22 1.65	6,394 4,946	260,685 277,032			649,34 568,52
	Concrete Embedded metals	3,747	LB	92 1.63		26.72	w/ forms	4,940	277,032 6,110	291,490		568,52. 6,110
	Subtotal - Concrete Work								868,621	 1,325,130	0	2,193,751
	Subjutat - Concrete Work								000,021	1,525,150	U	2,193,73
S	<u>SITEWORK</u>											
	Excavation	6,451	CY			26.72	0.55	3,548		209,130		209,13
	Backfill and Compaction	4,301	CY	9		26.72	0.99	4,258	37,405	250,960		288,36
	Foamglas (tank foundation insulation)	79,603	CF	11		26.72	0.08	6,486	865,408	382,300		1,247,70
	Refractory brick, with mortar (tank perimeter foundation)	210,203	EA	1.6		26.72	0.06	11,561	342,784	681,410		1,024,19
	Sand (tank foundation)	167	CY	22		26.72	1.10	183	3,621	10,800		14,421
	Subtotal - Sitework								1,249,217	1,534,600	0	2,783,817
Х	PAINTING											
	Structural steel (allowance)	52,800	SF		0.54						28,701	28,701
	Subtotal								 64,569,038	 13,966,940		93,402,693
	Sales Tax								4,778,109	15,500,540	14,000,715	4,778,109
4	TOTAL - THERMAL STORAGE SYSTEM								69,347,147	13,966,940	 14,866,715	98,180,802
5	HEAT TRANSPORT FLUID SYSTEM											
с	COLUMNS AND VESSELS											
1	Heat Transport Fluid Expansion Vessels	8	EA	147,852		38.13	110	880	1,182,820	61,910		1,244,73
-	Horizontal, cylindrical, 14 ft. diameter, 59 ft. long 0.52 in. shell and head thickness, 68,000 lb, carbon steel	·		,			- 3 -		_,_ x _,_ z	J -, J		_,,,
2	Nitrogen Ullage Gas Storage Vessel	1	EA	184,815		38.13	220	220	184,820	15,480		200,30
	Horizontal, cylindrical, 12 ft. diameter, 60 ft. long 0.84 in. shell and head thickness, 85,000 lb, carbon steel											
	Subtotal - Columns and Vessels								 1,367,640	 77,390	0	
	Succession - Columns and Acsens								1,507,040	11,590	U	1,440,03

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 11)

				Unit C	ost	Labor	MH	Total		\$		
Code	Description	Qty	Unit	Material	S/C	\$ Rate	Rate	MH =====	Material	Labor ======	S/C	Tota1
E	HEAT EXCHANGERS											
1	Steam Generator U-tube / straight shell, 2 tube & 2 shell passes, carbon steel shell, tubes, and channel - Preheater - Carbon steel shell and tubes, 21,600 ft ² per shell	2	EA	281,789		38.13	297	594	564,000	41,790		605,790
	- Superheater - Carbon steel shell and tubes, 22,800 ft ² per shell	2	EA	297,444		38.13	319	638	595,000	44,880		639,880
	- Reheater - Carbon steel shell and tubes, 29,650 ft ² per shell	4	EA	386,808		38.13	407	1,628	1,547,000	114,530		1,661,530
	U-tube / straight shell, 2 tube & 1 shell passes, carbon steel shell, tubes, and channel - Kettle Evaporator - Carbon steel shell and tubes, 38,000 ft ² per shell	4	EA	991,480		38.13	528	2,112	3,966,000	148,580		4,114,580
2	Blowdown Heat Exchanger	1	EA					Include	d in T/G price			0
3	Heat Transport Fluid Heater 2 50-percent capacity; 1,190 million Btu/hr each; natural gas fired 550 F / 735 F Therminol inlet / outlet temperatures Complete with air preheater, induced draft fans, and forced draft fans Includes \$3/kWe for NOx selective catalytic reduction system and \$1/kWe for CO oxidation catalyst system	2	EA	3,859,380		38.13	53,130	106,260	7,719,000	7,475,380		15,194,380
	Subtotal - Heat Exchangers								14,391,000	7,825,160	0	22,216,160
G	PUMPS AND DRIVERS											
1	Heat Transport Fluid Pumps - Horizontal, multi-stage 17,000 gpm, 715 ft tdh, 3500 bhp electric motor, Variable speed drive, CS impeller and bowl	6	EA	1,720,957		38.13	935	5,610	10,325,740	394,660		10,720,400
2	Auxiliary Boiler Feedwater - Horizontal, multi-stage 250 gpm, 3000 ft tdh, 250 bhp electric motor, Variable speed drive, CS impeller and bowl	1	EA	67,947		38.13	253	253	67,950	17,800		85,750
	Subtotal - Pumps and Drivers								10,393,690	412,460	0	10,806,150
К	COMPRESSORS AND DRIVERS											
1	Expansion Vessel Nitrogen Ullage Gas Compressor 1300 Ib _m /hr, 43,000 ft total developed head, 40 bhp 75 psia inlet / 175 psia outlet pressures, 28 actual ft ³ /min discharge flow 2 stage with intercooler, variable speed drive	1	EA	6,523		38.13	186	186	6,520	13,090		19,610
Т	SPECIAL EQUIPMENT											
1	Heat Transport Fluid Solutia Therminol VP-1, 0.614 gal /m² collector field area	1,228,000	GAL	13					16,020,230			16,020,230

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 12)

				Unit Cost		Labor	MH	Total		\$		
Code	Description	Qty ====	Unit ===	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total
Е	HEAT EXCHANGERS											
1	Storage Tank Level Transmitters Sitrans LC500 capacitance detectors	2	EA	1,500		36.85	19.8	40	3,001	2,760		5,761
2	Salt Pump Discharge Flow Meters Venturi flow meters with Kaman KD-1911 impedance pressure transducers	2	EA	8,991		36.85	26.4	53	17,981	3,660		21,641
3	Salt Pump Discharge Pressure Transmitters Kaman KD-1911 impedance transducers	2	EA	8,991		36.85	26.4	53	17,981	3,660		21,641
4	Inter-tank Ullage Line Pressure Transmitter Kaman KD-1911 impedance transducer	1	EA	8,991		36.85	26.4	26	8,991	1,800		10,791
5	Nitrogen Storage Tank Pressure Yokogawa EJA510A transmitter	1	EA	1,413		36.85	19.8	20	1,413	1,380		2,793
7	Therminol Pipe Temperatures Type K thermocouple, located in carbon steel thermowell Industrial protection head assembly With A/D converter/transmitter	7	EA	721		36.85	25.3	177	5,045	12,230		17,275
8	Storage Tank Inventory Temperatures Type K thermocouple, Type 304 stainless steel braided sheath Ceramic insulation, suitable for immersion With A/D converter/transmitter	16	EA	656		36.85	25.3	405	10,489	27,970		38,459
9	Nitrogen Line Temperatures Type K thermocouple, Type 304 stainless steel braided sheath Ceramic insulation, with washer tab for pipe attachment With A/D converter/transmitter	2	EA	656		36.85	25.3	51	1,311	3,520		4,831
10	Pneumatic Tubing	12,000	FT	0.38		36.85	0.055	660	4,566	45,590		50,156
11	Raceway for Pneumatic Tubing	1,500	FT	1.36		36.85	0.55	825	2,038	56,980		59,018
12	Instrument Air Subheader	1,200	FT	4.35		36.85	1.76	2,112	5,218	145,880		151,098
13	Loop Check	140	EA			36.85	2.75	385		26,590		26,590
14	Calibration and Testing	70	EA			36.85	2.97	208		14,370		14,370
15	Operator Station (in control room, provided by others)	1	LT		36,477						36,477	36,477
	Subtotal - Instrumentation								 78,036	 346,390	36,477	460,903

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 13)

				Unit Co)st	Labor	MH	Total		\$		
Code	Description	Qty	Unit	Material	S/C	\$ Rate	Rate	MH	Material	Labor	S/C	Total
L												
1	Therminol Pipe and Fittings											
	60" Pipe - Carbon steel A106 Grade B, Std Wall (HTF pump headers)	500	LF	413		42.68	3.60	1,800	206,390	134,820		341,2
	24" Pipe - Carbon steel A106 Grade B, Std Wall (HTF pump inlet/outlet)	300	LF	136		42.68	1.87	561	40,760	42,020		82,
	48" Pipe - Carbon steel A106 Grade B, Std Wall (To/From SGS)	120	LF	330		42.68	3.20	384	39,560	28,760		68,
	42" Pipe - Carbon steel A106 Grade B, Std Wall (To/From SGS trains)	160	LF	288		42.68	2.80	448	46,110	33,560		79,
	48" Pipe - Carbon steel A106 Grade B, Std Wall (To/From HTF heater)	200	LF	330		42.68	3.20	640	65,940	47,940		113,
	34" Pipe - Carbon steel A106 Grade B, Std Wall (To/From each HTF heater)	200	LF	233		42.68	2.50	500	46,560	37,450		84
	34" Pipe - Carbon steel A106 Grade B, Std Wall (To/From SH/E/PH)	260	LF	233		42.68	2.50	650	60,520	48,680		109
	12" Pipe - Carbon steel A106 Grade B, Std Wall (To/From reheater trains)	160	LF	108		42.68	1.65	264	17,310	19,770		37
	8" Pipe - Carbon steel A106 Grade B, Std Wall (To/From reheaters)	300	LF	49		42.68	1.12	336	14,810	25,170		39
	6" Pipe - Carbon steel A106 Grade B, Sch 80 (Expansion vessel connection)	160	LF	33		42.68	0.86	138	5,250	10,340		15
	2" Pipe - Carbon steel A106 Grade B, Sch 80 (Vents and drains)	80	LF	9		42.68	0.70	56	690	4,190		4
2	Pipe Welds											
	- 60" Pipe - Carbon steel A106 Grade B, Std Wall (HTF pump headers)	63	EA			42.68	22.86	1,429		107,030		107
	24" Pipe - Carbon steel A106 Grade B, Std Wall (HTF pump inlet/outlet)	60	EA			42.68	8.82	529		39,620		39
	48" Pipe - Carbon steel A106 Grade B, Std Wall (To/From SGS)	15	EA			42.68	18.29	274		20,520		20
	42" Pipe - Carbon steel A106 Grade B, Std Wall (To/From SGS trains)	20	EA			42.68	16.00	320		23,970		23
	48" Pipe - Carbon steel A106 Grade B, Std Wall (To/From HTF heater)	25	EA			42.68	18.29	457		34,230		34
	34" Pipe - Carbon steel A106 Grade B, Std Wall (To/From each HTF heater)	25	EA			42.68	13.80	345		25,840		25
	34" Pipe - Carbon steel A106 Grade B, Std Wall (To/From SH/E/PH)	33	EA			42.68	13.80	449		33,630		33
	12" Pipe - Carbon steel A106 Grade B, Std Wall (To/From reheater trains)	20	EA			42.68	4.48	90		6,740		6
	8" Pipe - Carbon steel A106 Grade B, Std Wall (To/From reheaters)	38	EA			42.68	3.15	118		8,840		8
	6" Pipe - Carbon steel A106 Grade B, Sch 80 (Expansion vessel connection)	32	EA			42.68	2.40	77		5,770		5
	2" Pipe - Carbon steel A106 Grade B, Sch 80 (Vents and drains)	17				42.68	1.60	27		2,020		2
3	Valves											
	60 in. Gate, CS, 300 lb class, Air operated	1	EA	138,714					138,710			138
	48 in. Gate, CS, 300 lb class, Air operated	2	EA	83,296					166,590			166
	42 in. Gate, CS, 300 lb class, Air operated	3	EA	61,645					184,930			184
	34 in. Gate, CS, 300 lb class, Air operated	4	EA	43,417					173,670			173
	8 in. Globe, CS, 300 lb class, Air operated	4	EA	3,729					14,920			14
	24 in. Gate, CS, 300 lb class, Air operated	12	EA	17,268					207,220			207
	24 in. Check, CS, 300 lb class	6	EA	17,991					107,950			107
	8 in. Gate, CS, 150 lb class, Manual	8	EA	966					7,730			7
4	Miscelleneous Piping and Operations											
	Hangers and supports (20% of installation manhours; \$4/ft for material)	1	LT	9,760		42.68	1978	1,978	9,760	148,150		157
	Waste allowance (10% of piping material)	1	LT	54,390					54,390			54
	Testing and inspection (7.5% of installation manhours)	1	LT			42.68	742	742	-	55,580		55
	Material handling (5% of installation manhours)	1				42.68	495	495		37,080		37
	Freight (3% of material)	1	LT	16,317					16,320			16
	Subtotal - Piping								 1,626,090	 981,720	 0	2,607,

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 14)

				Unit C	ost	Labor	MH	Total		\$		
Code	Description	Qty	Unit	Material	S/C	\$ Rate	Rate	MH	Material	Labor	S/C	Total
==== M	STRUCTURAL STEEL	====	===									
111	Heavy steel	25.0	Т	1,468		26.72	10	250	36,690	14,730		51,420
	Light structural steel	16.0	T	1,957		26.72	40	640	31,310	37,720		69,030
	Deck plate	5.0	T	1,087		26.72	20	100	5,440	5,890		11,330
	Stair tower	5.0	T	3,397		26.72	40	200	16,990	11,790		28,780
	Subtotal - Structural Steel								90,430	70,130		160,560
N	INSULATION											
1	Expansion Vessels											
•	6 in. calcium silicate, aluminum jacket, 1.2 fitting factor	27,900	ESF	13		42.68	0.81	22,501	373,060	1,685,320		2,058,380
2	Steam Generator Heat Exchangers											
2	8 in. calcium silicate, aluminum jacket, 1.2 fitting factor	7,600	ESF	17		42.68	0.91	6,918	130,900	518,160		649,060
3	Pipe: Calcium silicate with aluminum jacket											
	- 60" x 6" thick, 1.2 fitting factor	600	ELF	244		42.68	2.76	1,657	146,180	124,110		270,290
	- 24" x 4" thick, 1.2 fitting factor	360	ELF	74		42.68	1.10	395	26,700	29,590		56,290
	- 48" x 6" thick, 1.2 fitting factor	144	ELF	202		42.68	2.36	340	29,100	25,470		54,570
	- 42" x 6" thick, 1.2 fitting factor	192	ELF	181		42.68	2.13	408	34,780	30,560		65,340
	- 34" x 6" thick, 1.2 fitting factor	312	ELF	153		42.68	1.78	556	47,760	41,640		89,400
	- 12" x 6" thick, 1.2 fitting factor	192	ELF	74		42.68	0.82	157	14,180	11,760		25,940
	- 8" x 6" thick, 1.2 fitting factor	360	ELF	59		42.68	0.66	236	21,250	17,680		38,930
	- 6" x 4" thick, 1.4 fitting factor	224	ELF	29		42.68	0.50	112	6,460	8,390		14,850
	- 2" x 4" thick, 1.4 fitting factor	112	ELF	18		42.68	0.38	43	2,060	3,220		5,280
	Subtotal - Insulation								832,430	2,495,900	0	3,328,330
Р	ELECTRICAL											
1	Power Distribution											
	Distribution transformer, 200 / 300 kVA, 4.16 kV - 480 V, AA / FA	1	EA	30,440		29.42	28	28	30,440	1,700		32,140
	(3Φ power to nitrogen compressor and startup feedwater pump)											
	480 V motor control center	3		5,436		29.42	88	264	16,307	16,270		32,577
	Size 1 combination starters	3		1,631					4,892			4,892
	Size 3 combination starters	1		2,609					2,609			2,609
	4.16 kV switchgear, 2500 A main breaker, 7 each current limiting fuses	1	LT	141,329		29.42	264	264	141,329	16,270		157,599
	and contactors (6 HTF circulation pump contactors + 1 substation contactor)											
	480 V switchgear, 300 A main breaker and transition section to MCC	1		3,261		29.42	44	44	3,261	2,710		5,971
	480 V disconnect switches, 100 A	3		506		29.42	6	17	1,517	1,020		2,537
	Lighting panel; 42 circuits	1	EA	1,712		29.42	33	33	1,712	2,030		3,742
	480 V disconnect switches, 30 A	3		228		29.42	б	17	685	1,020		1,705
	Start / stop switches	12	EA	250		29.42	11	132	3,001	8,140		11,141
	Variable frequency drive (installation only)	6	ΕA	109		29.42	66	396	652	24,410		25,062

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 15)

				Unit C	ost	Labor	MH	Total		\$;	
Code	Description	Qty	Unit	Material	S/C	\$ Rate	Rate	MH	Material	Labor	S/C	Total
			===									
2	Lighting											
	Stanchions	16	EA	326		29.42	5.5	88	5,218	5,420		10,63
	Pendant lights	10	EA	326		29.42	5.5	55	3,261	3,390		6,65
	Staircase lighting	5	EA	326		29.42	5.5	28	1,631	1,700		3,33
	Photocell	1	EA	130		29.42	2.2	2	130	140		27
	Lighting contactor	1	EA	478		29.42	11.0	11	478	680		1,15
	Receptacles	6	EA	54		29.42	2.2	13	326	810		1,13
	1 in. rigid steel conduit	1,125	FΤ	2.16		29.42	0.22	247	2,429	15,200		17,62
	1 1/2 in. rigid steel conduit	210	FT	2.97		29.42	0.26	54	624	3,360		3,98
	2 conductor, 12 gauge wire	7,170	FT	0.15		29.42	0.010	71	1,091	4,380		5,47
3	Welding Receptacle	1	EA	294		29.42	11	11	290	680		97
4	Communication Stations											
	GAI-Tronics page/party station	2	EA	1,098		29.42	8.80	18	2,196	1,080		3,27
	Hom	2	EA	245		29.42	4.40	9	489	540		1,02
	U bracket for horn	2	EA	76					152			15
	5 party line cable	660	FT	2.99		29.42	0.08	52	1,973	3,220		5,19
	Single line cable	660	FT	0.54		29.42	0.03	20	359	1,250		1,60
	1 in. rigid steel conduit	160	FΤ	2.16		29.42	0.22	35	345	2,160		2,50
5	Fire / Smoke Detectors											
	Emergency shutdown stations	2	EA	82		29.42	2.20	4	163	270		43
	Photoelectric smoke detectors	8	EA	163		29.42	2.20	18	1,305	1,080		2,38
	Thermal detectors	8	EA	163		29.42	2.20	18	1,305	1,080		2,38
	Strobe light and horn	2	EA	109		29.42	2.20	4	217	270		48
	Electric wire, 16 gauge	550	FT	0.15		29.42	0.010	5	84	340		42
	1 in. rigid steel conduit	840	FΤ	2.16		29.42	0.22	184	1,814	11,350		13,16
	Terminal box	1	EA	435		29.42	5.50	6	435	340		77
б	Instrument Conduit											
	1 3/4 in. rigid steel conduit	3,500	FT	2.97		29.42	0.26	908	10,408	55,960		66,36
	2 1/2 in. flexible connections to instruments	70	EA	22		29.42	2.20	154	1,522	9,490		11,01
7	Cable Trays											
	12 in. power cable tray	600	FT	11		29.42	0.29	176	6,419	10,860		17,27
	12 in. instrument cable tray	800	FT	11		29.42	0.29	235	8,558	14,480		23,03
	24 in. 4.16 kV power cable tray	660	FT	12		29.42	0.41	274	7,914	16,870		24,78
	36 in. power cable tray	660	FT	16		29.42	0.57	376	10,662	23,180		33,84
	Tray covers	2,460	FT	Included		29.42	0.00	0	0	0		
	Support columns	33	EA	300		29.42	33.0	1,089	9,900	67,130		77,03
	Support sleepers	24	EA	100		29.42	5.5	132	2,400	8,140		10,54

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 16)

				Unit Co	st	Labor	MH	Total		\$		
Code	Description	Qty	Unit	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total =======
8	Wire and Cable											
	4.16 kV											
	3 conductor, 0000 gauge	4,500	FT	3.60		29.42	0.017	76	16,193	4,690		20,8
	Terminations	70	EA	1.75		29.42	0.130	9	123	560		6
	<u>480 V</u>											
	З conductor, б gauge	7,200	FT	0.29		29.42	0.005	36	2,113	2,250		4,3
	Terminations	120	EA	1.16		29.42	0.083	10	140	610		7
	Control and instrument											
	7 conductor, 14 gauge	5,940	FT	1.59		29.42	0.015	91	9,428	5,640		15,0
	Twisted pair, 16 gauge	1,200	FT	1.11		29.42	0.012	15	1,331	900		2,2
	Twisted pair, 16 gauge, thermocouple	5,000	FT	1.11		29.42	0.012	61	5,544	3,760		9,3
	25 pair, 16 gauge	2,640	FT	7.89		29.42	0.052	137	20,837	8,430		29,2
	25 conductor, 14 gauge	2,200	FT	4.13		29.42	0.034	75	9,089	4,620		13,7
	Terminations	1,600	EA	17.97		29.42	0.715	1,144	28,753	70,520		99,2
	Termination boxes	8	EA	435		29.42	11.0	88	3,479	5,420		8,8
	Armored cable connections	150	ΕA	54		29.42	1.1	165	8,154	10,170		18,3
9	Cathodic Protection											
	Graphite anodes	2		951		29.42	8.25	17	1,900	1,020		2,
	Rectifier	2	EA	973		29.42	6.60	13	1,950	810		2,
	Test station	2	EA	76		29.42	2.20	4	150	270		
	Reference cell	2	EA	54		29.42	5.50	11	110	680		
	Electric cable	300	FΤ	0.87		29.42	0.17	51	260	3,150		3,4
10	Grounding											
	Vessels and structural steel			4.50		~~ ~~						
	1 conductor, 00 gauge, bare cable	1,550	FT	1.59		29.42	0.275	426	2,459	26,260		28,
	Cadwelds	20	EA	11		29.42	1.26	25	220	1,550		1,
	Grounding rods	10	ΕA	33		29.42	2.2	22	330	1,360		1,
	Switchgear	105	r.T.	1.60		20.42	0.076	24	100	0.100		
	1 conductor, 00 gauge, bare cable	125 12	FT EA	1.59 11		29.42	0.275 1.26	34 15	198	2,120 930		2,
	Cadwelds Dire webs	12	EA	11		29.42	1.20	D	130	930		1,
	Pipe racks 1 conductor, 00 gauge, bare cable	330	FT	1.59		29.42	0.275	91	524	5,600		6,
	i conductor, oo gauge, oare caole Cadwelds	36	EA	1.59		29.42 29.42	1.26	45	524 390	2,790		o, 3,
		50	EA	33		29.42 29.42	2.2	4) 13	200	2,790 810		, 1,
	Grounding rods Mechanical equipment	0	EA	دد		29.42	2.2	15	200	810		1,
	Heat transport fluid pumps	6	EA	11		29.42	1.10	7	70	410		
		4	EA	11		29.42 29.42	1.10	4	70 40	410 270		
	Heat transport fluid heaters	4		11		29.42 29.42	1.10	4	40 20	270 140		
	Motor operated valves	2	ea Ea	11		29.42 29.42	1.10	2	20 10	140 70		
	Heat exchangers	1		11		29.42 29.42	1.10	1	10 10	70 70		
	Nitrogen storage vessel							-		70 70		
	Nitrogen cooler	1	EA	11		29.42	1.10	1	10			
	Nitrogen compressor	1	EA	11		29.42	1.10	1	10	70 4 070		
	1 conductor, 00 gauge, bare cable	600	FT	1.59		29.42	0.169	102	952	6,270		7, 8,
	1 conductor, 2 gauge, bare cable	730	FT	1.09		29.42	0.169	124	794	7,620		3

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 17)

				Unit Cos	st	Labor	MH	Total		\$ -		
Code	Description	Qty	Unit ===	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total
11	Testing	1	LT	5,436		29.42	263	263	5,436	16,210		21,64
	Subtotal - Electrical								411,862	 534,540		 946,40
Q	CONCRETE WORK											
1	Steam Generator Heat Exchangers											
	Concrete	193	CY	82		26.72	1.65	318	15,710	18,740		34,45
	Forms	2,891	SF	1.63		26.72	0.39	1,113	4,710	65,600		70,31
	Reinforcing Steel	14	Т	870		26.72	22	318	12,570	18,740		31,31
	Embedded Metal	964	LB	1.63		26.72	w/ forms		1,571	·		1,57
2	Heat Transport Fluid Expansion Vessels											
	Concrete	114	CY	82		26.72	1.65	188	9,280	11,080		20,36
	Forms	1,707	SF	1.63		26.72	0.39	657	2,780	38,720		41,50
	Reinforcing Steel	9	Т	870		26.72	22	188	7,422	11,060		18,48
	Embedded Metal	569	LB	1.63		26.72	w/ forms		928			92
2	Heat Transport Fluid Heaters											
	Concrete	556		82		26.72	1.65	917	45,300	54,050		99,33
	Forms	8,333	SF	1.63		26.72	0.39	3,208	13,590	189,080		202,67
	Reinforcing Steel	42	Т	870		26.72	22	917	36,238	54,030		90,26
	Embedded Metal	2,778	LB	1.63		26.72	w/ forms		4,530			4,53
4	Heat Transport Fluid Pumps											
	Concrete	67	CY	82		26.72	1.10	73	5,440	4,300		9,74
	Forms	333	SF	1.63		26.72	0.35	117	540	6,900		7,44
	Reinforcing Steel	5	Т		761						3,810	3,81
	Embedded Metal	333	LB	1.63		26.72	0.07	23	540	1,360		1,90
	Subtotal - Concrete Work								161,149	473,660	3,810	638,61
s	SITEWORK											
	Excavation	498	CY			26.72	0.55	274		16,130		16,13
	Backfill	249	CY	9		26.72	0.99	246	2,164	14,520		16,68
	Subtotal - Sitework								2,164	30,650	0	32,81
х	PAINTING											
	Structural steel (allowance)	15,000	SF		0.54						8,154	8,15
	Subtotal - Heat Transport Fluid System								45,381,241	13,261,090	48,441	58,690,77
	Sales Tax								3,358,212			3,358,21
5	TOTAL - HEAT TRANSPORT FLUID SYSTEM								48,739,453	13,261,090	48,441	62,048,98

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 18)

				Unit Co		Labor	MH	Total		\$		
Code	Description	Qty =====	Unit ===	Material =======	S/C ======	\$ Rate =====	Rate =====	MH =====	Material ======	Labor ======	S/C	Total =======
б	ELECTRIC POWER GENERATION SYSTEM											
С	COLUMNS AND VESSELS											
1	Instrument Air Filters - Replaceable cartridge, 150 psig design pressure 5 micron filter, 33 scfm	2	EA	2,990		26.72	22	44	5,980	3,100		9,080
2	Compressed Air Receivers - Vertical, cylindrical, carbon steel with dished heads, 4 ft. diameter x 15° 6" tall, 200 ft³ capacity	2	EA	10,871		26.72	66	132	21,740	9,290		31,030
3	Air Dryer - Dual tower desiccant dryer with automatic regeneration controls 200 scfm, 110 psig	1	LT	8,697		26.72	88	88	8,700	6,190		14,890
4	Liquid N_2 Storage - 1000 gallons, 400 psig, includes 300 scfm vaporizer	1	EA	10,871		26.72	88	88	10,870	6,190		17,060
5	Open Deserating Feedwater Heater Tray and spray type, with external vent, 150 psig design pressure 12 ft. diameter x 19 ft. long, carbon steel, 0.800 in. wall, 31,000 lb	1	EA	67,403		26.72	176	176	67,400	12,380		79,780
	Subtotal - Columns and Vessels									37,150	0 0	151,840
D	TANKS											
1	Fuel Oil Storage - 5000 gallon, horizontal, double walled fiberglass, underground	1	EA	20,656		26.72	66	66	20,660	4,640		25,300
2	Diesel Generator Day - 200 gallon, horizontal, carbon steel Above ground with concrete catch basin	1	EA	13,046		26.72	22	22	13,050	1,550		14,600
3	Lubricating Oil Conditioner - centrifugal oil purifier, 7.5 bhp drive, 480 V Includes two 36 kW oil heaters	1	EA	65,773		26.72	176	176	65,770	12,380		78,150
4	Demineralizer - 100 gpm, skid mounted, dual string with cation, ion, and mixed bed ion exchangers, degas tower, includes piping, valves, and regeneration control, 1 bhp air blower and 25 bhp pumps	1	LT	761,004		26.72	2,200	2,200	761,000	154,770		915,770
5	Hyprochlorinator - 120 gallon / 60 gallon per day, panel mounted feeder with water powered metering pump, plastic tank, water analyzer, and controls	1	EA	5,979		26.72	176	176	5,980	12,380		18,360
6	Lime Grit Hopper - 12 ft ³ , 20 in. diameter x 3 ft high, flat bottom, open top Carbon steel with outlet side gate valve	1	EA	2,718		26.72	26	26	2,720	1,830		4,550
7	Sand Filters - 35 $\mathrm{ft}^3,$ vertical flow with plastic internals, 100 gpm flow rate	2	EA	1,848		26.72	22	44	3,700	3,100		6,800
8	Soda Ash Mixing - 100 gallons, 30 in. diameter x 48 in. high, plastic Wing top with gauge glass and level switches	1	EA	544		26.72	22	22	540	1,550		2,090
9	Liquid Coagulant Mixing - 100 gallons, 30 in. diameter x 48 in. high, plastic Floating lip with gauge glass and level switches	1	EA	544		26.72	22	22	540	1,550		2,090

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 19)

				Unit Co	ost	Labor	MH	Total		\$		
Code	Description	Qty ====	Unit ===	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total =======
10	Chemical Feed - 300 gallon, 48 in. diameter x 4 ft 6 in. high, 304 stainless steel with gauge glass and level switches, 2 with floating lid, 1 with wing lid	3		14,350		26.72	26	 79	 43,050	 5,560		 48,610
11	Sodium Phosphate Dissolving Funnel - 100 gallon, 30 in. diameter x 4 ft high 304 stainless steel, "V' bottom with outlet strainer	1	EA	2,392		26.72	22	22	2,390	1,550		3,940
12	Lime Soda Softener - 28,500 gallons, cone bottom, open top Carbon steel with plastic lining and internals, 18 ft. diameter x 16 ft. high	1	EA	81,536		26.72	132	132	81,540	9,290		90,830
13	Service Water Storage - 10,000 gallons, cone roof, fiberglass 12 ft. diameter x 13 ft. high	1	EA	19,569		26.72	70	70	19,570	4,920		24,490
14	Sludge Thickener - 3,000 gallons, cone bottom, open top Carbon steel with plastic lining and internals, 7 ft. 6 in. diameter x 10 ft. high	1	EA	16,307		26.72	194	194	16,310	13,650		29,960
15	Supernatant Storage - 400 gallon nominal capacity, vertical with cone roof 4 fl. diameter x 6 fl. high	1	EA	2,174		26.72	26	26	2,170	1,830		4,000
16	Sulfuric Acid Storage - 6,000 gallons, horizontal cylindrical, carbon steel 7 ft. diameter x 21 ft long	1	EA	15,546		26.72	66	66	15,550	4,640		20,190
17	Potable Water Storage - 1,000 gallon, horizontal cylindrical, carbon steel 4 fl. diameter x 12 ft 6 in. long, 150 psi design pressure	1	EA	7,719		26.72	66	66	7,720	4,640		12,360
18	Liquid Coagulant Storage - 350 gallons, horizontal cylindrical, carbon steel 42 in. diameter x 72 in. long	1	EA	1,087		26.72	26	26	1,090	1,830		2,920
19	Caustic Soda Storage - 3,500 gallons, horizontal cylindrical, carbon steel 5 ft. diameter x 23 ft. 6 in. long, 8 kWe 480 V immersion heater	1	EA	13,263		26.72	88	88	13,260	6,190		19,450
20	Soda Ash Storage Bin - 10,000 lb capacity, vertical cylindrical, cone top and hopper bottom, bottom discharge duct, slide gate valve Carbon steel, 5 ft. diameter x 10 ft. high, 8 ft ground clearance	1	EA		43,486						43,490	43,490
21	Quick Lime Storage Bin - 9,600 lb capacity, vertical cylindrical, cone top and hopper bottom, bottom discharge duct, slide gate valve Carbon steel, 5 ft. diameter x 10 ft. high, 8 ft ground clearance	1	EA		43,486						43,490	43,490
	Subtotal - Tanks								 1,076,610	 247,850	86,980	 1,411,440
E	HEAT EXCHANGERS											
1	Feedwater Heaters - Horizontal, closed, integral desuperheater and drain cooler Low pressure 1 - 8,309 ft ² Low pressure 2 - 11,754 ft ² Low pressure 3 - 12,264 ft ² High pressure 1 - 12,691 ft ²	1 1 1 1	EA EA EA	135,497 191,675 199,992 344,925		38.13 38.13 38.13 38.13	110 165 165 176	110 165 165 176	135,500 191,680 199,990 344,930	7,740 11,610 11,610 12,380		143,240 203,290 211,600 357,310
	High pressure 2 - 21,476 ft ²	1	EA	583,690 4.5		38.13	297	297	583,690	20,890		604,580

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 20)

				Unit Co	st	Labor	MH	Total		\$		
Code	Description	Qty ====	Unit	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor =======	S/C	Total =======
2	Main Condenser - 2,000,000 lb/hr inlet steam, 2.5 in. HgA 222,000 gpm circulating water flow rate, 141,200 ft ² heat transfer area	1	EA	3,377,120		38.13	968	968	3,377,120	68,100		3,445,220
3	Cooling Towers - Wet, mechanical draft, 135,000 gpm circ water flow rate Circulating water: 101 F to 80 F @ 104 F dry bulb / 68 F wet bulb 9 cells, 300 kWe 2 speed fan in each cell	9	EA	470,011		38.13	264	2,376	4,230,090	167,150		4,397,240
4	Gland Steam Condenser - Straight tube heat exchanger Steam on shell side, water on tube side, 2500 lb/hr steam at 3.0 psia 400 ft ² surface area, carbon steel shell, stainless steel tubes	1	EA	8,697		38.13	44	44	8,700	3,100		11,800
	Subtotal - Heat Exchangers								9,071,700	302,580	0	9,374,280
G	PUMPS AND DRIVERS											
1	Condensate - 2 x 100 %, 4025 gpm, 335 ft tdh, 114 °F, 450 bhp motor, 4.16 kV 1750 rpm, multi-stage vertical turbine, mounted in below-grade cans	2	EA	92,408		26.72	253	506	184,820	35,600		220,420
2	Feedwater - 2 x 100 %, 5285 gpm, 3590 ft tdh, 312 °F, 5500 bhp 4.16 kV motor, 1750 rpm, multi-stage horizontal turbine	2	EA	489,217		26.72	1155	2,310	978,430	162,510		1,140,940
3	Component Cooling Water - 2 x 100 %, 18300 gpm, 225 ft tdh, 1250 bhp, 4.16 kV Double suction, single state, horizontal split case, centrifugal Cast iron case and impeller	2	EA	59,793		26.72	418	836	119,590	58,810		178,400
4	Sludge Transfer - 2 x 100 %, 70 gpm, 20 ft tdh, 5 bhp motor, 480 V, 1100 rpm Centrifugal, vertical, split, rubber-lined, cast iron case, V belt drive, TEFC motor	2	EA	2,174		26.72	28	55	4,350	3,870		8,220
5	Sludge Disposal - 2 x 100 %, 25 gpm, 100 ft tdh, 7.5 bhp, 480 V motor Centrifugal, vertical, split, rubber-lined, cast iron case, V belt drive, TEFC motor	2	EA	3,261		26.72	28	55	6,520	3,870		10,390
6	Blowdown Makeup - 2 x 100 %, 18 gpm, 3600 ft tdh, 25 bhp, 480 V motor Positive displacement, variable speed drive	2	EA	3,805		26.72	83	165	7,610	11,610		19,220
7	Service Water - 2 x 100 %, 250 gpm, 350 ft tdh, 30 bhp, 480 V motor Double suction, single stage, horizontal split case centrifugal Cast iron case with 316 stainless steel shaft and impeller	2	EA	8,969		26.72	83	165	17,940	11,610		29,550
8	Cinculating Water - 2 x 50 %, 110,000 gpm, 70 ft tdh, 2400 bhp motor 4.16 kV, 870 rpm, multi-stage vertical turbine, can type	2	EA	201,123		26.72	715	1,430	402,250	100,600		502,850
9	Turbine Oil Pit Sump - 25 gpm, 50 ft tdh, 3/4 bhp, 480 V, 1750 rpm Positive displacement, with level switch	2	EA	4,783		26.72	28	55	9,570	3,870		13,440
10	Oily Waste Sump - 100 gpm, 50 ft tdh, 2 bhp, 480 V, 1750 rpm Positive displacement, with level switch	2	EA	10,871		26.72	28	55	21,740	3,870		25,610

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 21)

				Unit C	ost	Labor	MH	Total		\$		
Code	Description	Qty ====	Unit ===	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total =======
11	Fire Water - 1000 gpm, 300 ft tdh, 125 bhp motor, 480 V Single stage centrifugal, NFPA access and control panel	2		35,876		26.72	253	506	71,750	35,600		107,350
12	Fire Water Pressure Maintenance - 20 gpm, 300 ft tdh, 5 bhp motor, 480 V Single stage centrifugal	1	EA	2,392		26.72	28	28	2,390	1,970		4,360
13	Supernatant Transfer - 5 gpm, 50 ft tdh, fractional hp, 480 V Single stage, vertical split case, cast iron case and impeller	2	EA	1,196		26.72	28	55	2,390	3,870		6,260
14	Soda Ash Injection - 1 gpm, 30 ft tdh, 0.1 bhp, 480 $\mathbb V$	2	EA	598		26.72	28	55	1,200	3,870		5,070
15	Lime Injection - 1 gpm, 30 ft tdh, 0.1 bhp, 480 $\mathbb V$	2	EA	598		26.72	28	55	1,200	3,870		5,070
16	Coagulant Transfer - 2 gpm, 30 ft tdh, 0.1 bhp, 480 V	2	EA	1,196		26.72	28	55	2,390	3,870		6,260
17	Acid Injection - 0 to 50 gpm, 60 psi, 1/2 bhp, 120 V Positive displacement, 316 stainless steel	2	EA	4,783		26.72	28	55	9,570	3,870		13,440
18	Coagulant Aid Charging - 0 to 5 gpm, 30 psi, fractional bhp, 120 V Positive displacement, 316 stainless steel	2	EA	4,783		26.72	28	55	9,570	3,870		13,440
19	Caustic Feed - 0 to 50 gpm, 60 psi, 3/4 bhp, 120 V Positive displacement, 316 stainless steel	2	EA	4,783		26.72	28	55	9,570	3,870		13,440
20	Ammonia Solution Feed - 0 to 10 gpm, 250 psi, 3/4 bhp, 120 V Positive displacement, 316 stainless steel	2	EA	5,979		26.72	28	55	11,960	3,870		15,830
21	Hydrazine Feed - 0 to 10 gpm, 250 psi, 3/4 bhp, 120 ∇ Positive displacement, 316 stainless steel	2	EA	5,979		26.72	28	55	11,960	3,870		15,830
22	Sodium Phosphate Feed - 0 to 10 gpm, 1800 psi, 15 bhp, 480 V Positive displacement, 316 stainless steel	2	EA	8,697		26.72	83	165	17,390	11,610		29,000
23	Hydrazing Dispensing - 8 gpm, 15 cfm air drive at 90 psig. Reciprocating drive, stainless steel drum, 48 in. riser tube	1	EA	3,588		26.72	28	28	3,590	1,970		5,560
24	Ammonia Dispensing - 8 gpm, 15 cfm air drive at 90 psig, Reciprocating drive, stainless steel drum, 48 in. riser tube	1	EA	3,588		26.72	28	28	3,590	1,970		5,560
25	Diesel Generator Fuel Oil Supply - 2 gpm, 150 ft tdh, 1/4 bhp, 120 V Positive displacement	1	EA	1,087		26.72	28	28	1,090	1,970		3,060
	Subtotal - Pumps and Drivers								 1,912,430	 486,140	 0	 2,398,570

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 22)

				Unit C		Labor	MH	Total		*		
Code	Description	Qty =====	Unit ===	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C ======	Total
К	COMPRESSORS AND DRIVERS											
1	Air Compressors - 2 x 100 %, 2 stage, non-lubricated reciprocating 560 actual ft ³ /min delivery, 110 psig, 150 bhp, 480 ∀ Inter- and after-coolers, carbon steel shell, stainless steel tubes Cooling water - 20 gpm, 10 psi	2	EA	92,408		26.72	176	352	184,820	24,760		209,5
2	Vacuum Pumps - 1,000 actual fl ³ /min, 300,000 ft total developed head 80 bhp motor, single stage, positive displacement with liquid seal rotor Discharge with water trap silencer	2	EA	48,922		26.72	176	352	97,840	24,760		122,6
3	Gland Steam Condenser Air Exhauster - Horizontal shaft axial blower 500 ft ³ /min, 5,000 ft total developed head, 7.5 bhp motor, 480 V	2	EA	5,436		26.72	44	88	10,870	6,190		17,0
	Subtotal - Compressors and Drivers								 293,530	55,710	0	349,2
Т	SPECIAL EQUIPMENT											
1	 Turbine Generator Package Steam Turbine - 2 cylinder (HP and IP/LP), downward exhaust 265 MWe, 1800 rpm, 1465 psia / 703 F / 703 F, 2.5 in. HgA exhaust 2,340,000 lb/hr main steam flow rate Generator - 2 pole, air cooled, 294 MVA, 0.9 lagging power factor 13.8 kV, 12,300 A each phase Exciter - Direct drive, solid state Turbine turbine gear and motor Automatic voltage and stability control panel Generator gas control panel Lube oil reservoir - 10,000 gallons, carbon steel tank Lube oil coolers - Straight tube / straight shell, 300 gpm oil flow Lube oil vapor extractor - 15 bhp, 175 cfm Primary oil pumps - Vertical centrifugal, single stage pump 250 bhp, 480 V motor, mounted on oil reservoir Emergency oil pumps - Vertical centrifugal, single stage pump 250 bhp, 125 V DC motor, mounted on oil reservoir Turning gear oil pumps - Vertical centrifugal, single stage pump 30 bhp, 480 V motor, mounted on oil reservoir Jacking oil pumps - Positive displacement, horizontal 50 bhp, 480 V motor, mounted on oil reservoir Jacking oil pumps - Positive displacement, horizontal 50 bhp, 480 V motor, mounted on oil reservoir Seal oil pumps - 150 gpm, 200 ft total developed head, 25 bhp, 480 V Cast iron case, carbon steel shaft and impeller, TEFC motor 	1	LT	54,737,965	244,609	38.13	10,397	10,397	54,737,970	731,430	244,610	55,714,
2	Turbine Crane - Step leg gantry with double girder bridge 90 ft center-to-center width, 110 ft. long, 80 ton main hook, 20 ton auxiliary	1	EA	804,490		26.72	748	748	804,490	52,620		857,3

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 23)

				Unit Cost		abor	MH	Total		\$ -		
Code	Description	Qty = =====	Unit ===	Material S/		Rate	Rate	MH =====	Material	Labor ======	S/C	Total
3	Shop and Warehouse Bridge Crane - 2 ton, single girder, top riding rail mounted conductor, pendant operating hoist 5 hp crane motor, 2 1/2 hp bridge motor	1	EA	21,526	:	26.72	176	176	21,530	12,380		33,9
4	Soda Ash Mixing Tank Agitator - Tank mounted, stainless steel 1/3 bhp motor drive, 120 V, 2 in. propeller	1	EA	1,087	:	26.72	22	22	1,090	1,550		2,6
5	Lime Paste Slaker - 200 lb/hr lime / water mixer (2:1 ratio) with classifier and grit discharge, 480 V motor drive	1	EA	3,805	:	26.72	44	44	3,810	3,100		6,9
	Subtotal - Special Equipment								55,568,890	801,080	244,610	56,614,5
Ρ	PIPING AND INSTRUMENTATION											
1	Main Steam - 20 in., Sch 80, carbon steel	200	LF	361		42.68	3.40	680	72,210	50,930		123,
	Welds	14				42.68	22.10	316		23,670		23,
	Main Steam - 14 in., Sch 80, carbon steel	180	LF	183		42.68	2.10	378	33,020	28,310		61
	Welds	13	EA			42.68	9.00	116		8,690		8
	Hot Reheat Steam - 36 in., STD wall, carbon steel	200	LF	247		42.68	2.50	500	49,330	37,450		86
	Welds	14	EA			42.68	13.80	197		14,760		14
	Hot Reheat Steam - 18 in., STD wall, carbon steel	320	LF	122		42.68	1.78	570	39,050	42,690		81
	Welds	23	EA			42.68	6.82	156		11,680		1
}	Cold Reheat Steam - 42 in., STD wall, carbon steel	200	LF	288		42.68	2.80	560	57,630	41,940		99
	Welds	14	EA			42.68	16.00	229		17,150		15
	Cold Reheat Steam - 20 in., STD wall, carbon steel	320	LF	136		42.68	1.87	598	43,480	44,790		83
	Welds	23	EA			42.68	7.49	171		12,810		11
	Condensate - 14 in., Sch 40, carbon steel	300	LF	110		42.68	1.54	462	32,900	34,600		6
	Welds	21	EA			42.68	5.18	111		8,310		:
	Feedwater - 14 in., Sch 80, carbon steel	700	LF	183		42.68	2.10	1,470	128,420	110,100		23
	Welds	50	EA			42.68	9.00	450		33,700		3
	Feedwater - 8 in., Sch 80, carbon steel	240	LF	75		42.68	1.12	269	18,000	20,150		3
	Welds	17	EA			42.68	3.15	54		4,040		
	Circulating Water - 72 in., concrete lined carbon steel	900	LF	497		42.68	4.50	4,050	446,860	303,340		75
	Welds	64	EA		•	42.68	27.43	1,763		132,050		13
	Feedwater Heater Extraction Steam - 10 in., Sch 40, carbon steel	360	LF	70		42.68	1.25	450	25,190	33,700		5
	Welds	36	EA			42.68	3.52	127		9,510		!
3	Feedwater Heater Drains - 4 in., Sch 40, carbon steel	480	LF	19		42.68	0.80	384	8,950	28,760		3
	Welds	60	EA			42.68	1.92	115		8,610		
	Process Water - 3 in., Sch 40, carbon steel	6,500	LF	13		42.68	0.70	4,550	85,120	340,790		42
	Welds	813	EA			42.68	1.60	1,300		97,370		9

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 24)

				Unit Cost		Labor	MH	Total		\$		
Code	Description	Qty	Unit ===		/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total
10	Service Water - 2 in., Sch 80, carbon steel Welds	2,500 313	LF EA	9		42.68 42.68	0.70 1.60	1,750 500	21,700	131,070 37,450		 152,770 37,450
11	Instrument Air - 2 in., Sch 80, carbon steel Welds	1,600 200	LF EA	9		42.68 42.68	0.70 1.60	1,120 320	13,890	83,890 23,970		97,780 23,970
12	Service Air - 2 in., Sch 80, carbon steel Welds	1,500 188	LF EA	9		42.68 42.68	0.70 1.60	1,050 300	13,020	78,640 22,470		91,660 22,470
13	Demineralized Water - 6 in., Sch 40, carbon steel Welds	300 38	LF EA	33		42.68 42.68	0.86 2.40	258 90	9,840	19,320 6,740		29,160 6,740
14	Lubricating Oil - 2 in., Sch 80, carbon steel Welds	400 50	LF EA	9		42.68 42.68	0.70 1.60	280 80	3,470	20,970 5,990		24,440 5,990
15	Chemical Feed - 1 in., Sch 80, stainless steel Welds	900 113	LF EA	23		42.68 42.68	1.40 3.20	1,260 360	20,270	94,370 26,960		114,640 26,960
16	Fuel Oil - 1 in., Sch 80, carbon steel Welds	200 25	LF EA	4		42.68 42.68	0.70 1.60	140 40	750	10,490 3,000		11,240 3,000
17	Nitrogen - 2 in., Sch 80, carbon steel Welds	300 38	lf EA	9		42.68 42.68	0.70 1.60	210 60	2,600	1 <i>5</i> ,730 4,490		18,330 4,490
18	Carbon Dioxide - 2 in., Sch 80, carbon steel Welds	200 25	LF EA	9		42.68 42.68	0.70 1.60	140 40	1,740	10,490 3,000		12,230 3,000
19	Auxiliary Steam - 4 in., Sch 40, carbon steel Welds	1,800 225	LF EA	19		42.68 42.68	0.80 1.92	1,440 432	33,570	107,860 32,360		141,430 32,360
20	Miscellaneous Process - 2 in., Sch 80, carbon steel Welds	2,500 313	LF EA	9		42.68 42.68	0.70 1.60	1,750 500	21,700	131,070 37,450		152,770 37,450
21	Pneumatic Tubing	22,000	FT	0.38		36.85	0.055	1,210	8,371	83,570		91,941
22	Raceway for Pneumatic Tubing	2,750	FT	1.36		36.85	0.165	454	3,737	31,360		35,097
23	Loop Checks	900	EA			36.85	2.75	2,475		170,950		170,950
24	Calibration and Testing	600	EA			36.85	2.97	1,782		123,080		123,080
25	Valves (150% of piping material)	1	LT	1,774,065					1,774,070			1,774,070
26	Instrumentation (35% of piping + valves; 45 MH/\$1000 of instrumentation)	1	LT	1,039,111		42.68	46,760	46,760		3,502,320		3,502,320

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 25)

				Unit Co	st	Labor	MH	Total		\$		
Code	Description	Qty	Unit	Material	S/C	\$ Rate	Rate	MH	Material	Labor	S/C	Total
===== 27	Miscelleneous Piping and Operations	====	===									
27	Hangers and supports (20% of installation manhours; \$4/ft for material)	1	LT	208,159		42.68	16,965	16,965	208,160	1,270,680		1,478,840
	Waste allowance (10% of piping material)	1	LT	296,889		42.00	10,909	10,909	296,890	1,2,0,000		296,890
	Testing and inspection (7.5% of installation manhours)	1		200,000		42.68	6,362	6,362	270,070	476,510		476,510
	Material handling (5% of installation manhours)	1				42.68	4,241	4,241		317,650		317,650
	Freight (3% of material)		LT	89,067		12.00	, <u>,,,,,,,</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	89,070	517,050		89,070
	Subtotal - Piping and Instrumentation								3,563,008	8,383,800	0	11,946,808
М	STRUCTURAL STEEL											
1	Structural Steel - Supports, Pipe Racks, Cable Trays	125	Т	1,631					203,840			203,840
2	Gratings and Ladders	7	Т	2,174					15,220			15,220
	Subtotal - Structural Steel								 219,060	 0	0	219,060
N	INSULATION											
1	Equipment											
	Feedwater Pumps	300	SF	3.33		26.72	0.51	152	998	8,960		9,958
	Condenser Air Ejectors	60	SF	3.33		26.72	0.51	30	200	1,770		1,970
	Feedwater Heaters	2,400	SF	6.13		26.72	0.62	1,500	14,711	88,410		103,121
	Deaerator	1,500	SF	6.13		26.72	0.62	937	9,194	55,230		64,424
	Miscellaneous Equipment	2,000	SF	6.13		26.72	0.62	1,250	12,259	73,670		85,929
2	Piping											
	Main Steam - 20 in. x 6 in.; 1.58 fitting factor	316	ELF	103		26.72	1.27	402	32,569	23,690		56,259
	Hot Reheat Steam - 36 in. x 6 in.; 1.58 fitting factor	316	ELF	160		26.72	2.06	650	50,596	38,310		88,906
	Cold Reheat Steam - 42 in. x 4 in.; 1.58 fitting factor	316	ELF	118		26.72	1.90	601	37,147	35,420		72,567
	Feedwater - 14 in. x 4 in.; 1.58 fitting factor	1,106	ELF	49		26.72	0.83	915	54,503	53,930		108,433
	Feedwater Heater Extraction Steam - 10 in. x 4 in.; 1.93 fitting factor	695	ELF	39		26.72	0.68	475	27,185	28,000		55,185
	Feedwater Heater Drains - 4 in. x 4 in.; 1.93 fitting factor	926 3.474	ELF ELF	24 24		26.72 26.72	0.48 0.48	447	21,907	26,350		48,257
	Auxiliary Steam - 4 in. x 4 in.; 1.93 fitting factor	5,474	ELF	24		20.72	0.48	1,675	82,153	98,720 		180,873
	Subtotal - Insulation								343,422	532,460	0	875,882
Р	ELECTRICAL											
1	Power Distribution											
	Main Transformer - 13.8 / 115 kV, 275 / 305 MVA, OA, 55 / 65 C	1		1,304,579		29.42	1,056	1,056	1,304,580	65,090		1,369,670
	Generator Main Bus - 12,300 A, 13.8 kV, 3 phase, non-segregated	90	LF	652		29.42	13	1,188	58,710	73,230		131,940
	Auxiliary Transformer - 115 / 4.16 kV, 50 / 55 MVA, OA, 55 / 65 C	1	EA	706,647		29.42	440	440	706,650	27,120		733,770
	Load Center Transformer - 4160 / 480 V, 1.0 / 1.12 MVA, AA, 55 / 65 C	2		71,752		29.42	99	198	143,500	12,200		155,700
	Load Center Transformer - 4160 / 480 V, 1.0 / 1.12 MVA, OA, 55 / 65 C	6	EA	71,752		29.42	99	594	430,510	36,610		467,120
	Indoor Transition Section and Auxiliary Cubicle	2	EA	21,743		29.42			43,490			43,490
	Outdoor Transition Section and Auxiliary Cubicle	6	ΕA	26,092		29.42			156,550			156,550

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 26)

				Unit C	ost	Labor	MH	Total		\$	6	
	Description	Qty	Unit	Material	S/C	\$ Rate	Rate	MH =====	Material	Labor	S/C	Tota ======
		====	===									
	A air circuit breaker, indoor (480 V transformers)	1	EA	27,179		29.42	40	40	27,180	2,470		29
	a air circuit breaker, indoor (Heat transport fluid pumps)	6	EA	14,133		29.42	40	238	84,800	14,670		99
	a air circuit breaker, indoor (Fredwater pump)	2		16,307		29.42	0 40	79	32,610	4,870		37
	a air circuit breaker, indoor (Circulating water pumps)	2		13,046		29.42	0 40	79	26,090	4,870		30
	a air circuit breaker, indoor (Nitrate salt pumps)	6		9,784		29.42	0 40	238	58,710	14,670		7:
	cuit Breakers - 480 V	0	Ln	2,704		47.44	40	200	56,710	14,070		,
	or, 1600 A	2	EA	21,743		29.42	15	31	43,490	1,910		4
	a, 800 A	10	EA	15,220		29.42	11	110	152,200	6,780		15
	oor, 1600 A	6		21,743		29.42	19	112	130,460	6,900		13
	oor, 800 A	27		15,220		29.42	13	356	410,940	21,940		43
	Control Centers - 480 V	2)	LTI	19,220		47.74	15	550	410,540	21,740		
Indoo		3	EA	21,743		29.42	176	528	65,230	32,550		9
Outd		14		27,179		29.42	220	3,080	380,500	189,850		57
	Control Center - 125 V DC	14		21,743		29.42	176	176 J	21,740	10,850		2
	ution Panels	1	ĽA	21,745		47.44	170	170	21,740	10,850		-
	V, 3 phase	3	EA	1,087		29.42	13	40	3,260	2,470		
	, 5 phase 120 V, single phase	9	EA	870		29.42 29.42	13	119	7,830	2,470 7,340		1
2087 125 V		1		1,087		29.42 29.42	13	119	1,090	7,340 800		
	Power Receptables	60	EA	1,087		29.42 29.42	1.94	116	6,520	200 7,150		:
	Control Stations	50		163		29.42 29.42	2.90	145	8,150	7,150 8,940		
	onitol Stations 8/120V Dry Type Transformers	50	LA	165		29.42	2.90	145	8,150	8,940		
480-204 9 kV <i>I</i>		5	EA	1,957		29.42	7.9	40	9,780	2,470		t
15 kV		2		2,718		29.42	13	40 26	5,440	1,600		
30 kV		1	EA	3,261		29.42	26	20 26	3,260	1,600		
45 kV		1		3,805		29.42	20 40	20 40	3,810	2,470		
	Receptables, 120 V	100	EA	3,805 9		29.42 29.42	0.97	40 97	5,810 870	2,470 5,980		
-	es, 120 V	80	EA	9		29.42	0.97	9) 77	700	4,750		
	rs, 120 v nd Meter Boards	10		9 8,697		29.42 29.42	40	396	700 86,970	4,700 24,410		1
	r and Racks, 60 Cells, 125 V DC	10		32,614		29.42 29.42	40 176	176	32,610	24,410 10,850		1.
-	r Charger, 125 V DC	2		21,743		29.42 29.42	44	88	43,490	5,420		
-	ruptible Power Supply, 100 kVA, 0.5 hours	1		108,715		29.42 29.42	44 440		43,490 108,710	27,120		12
	ncy Diesel-Generator, 1000 kVA	1		271,787		29.42 29.42	616	440 616	271,790	37,970		30
-	•	1		271,787 86,972		29.42 29.42	880	880	271,790 86,970	54,240		14
Plant Ir	one Switchboard and Equipment	1		27,179		29.42 29.42	880 880	880 880	26,970 27,180	54,240 54,240		14
		1										
	y System teation Statem	1		11,959		29.42 29.42			11,960 28.050	27,120		-
	tection System	-		38,050			352 2.6	352	38,050	21,700		
	g Fixtures - Low pressure sodium	100 60	ea Ea	381 815		29.42 29.42	2.6 26	264	38,050	16,270		1
	ay Lights with 30 ft. Poles							1,584	48,920	97,640		14
-	ncy Lighting Fixtures with 2 Lamps and Battery	24		435		29.42	2.6	63 52	10,440 7,610	3,880		
	g Transformer, 30 kVA, 3 phase 480 / 277 V, Indoor	2		3,805		29.42	26 26	53	7,610	3,270		:
· ·	g Transformer, 30 kVA, 3 phase, 480 / 277 V, Outdoor	3		3,805		29.42	26 26	79 50	11,420	4,870		1
-	g Panel, 480 / 277 V, 3 phase, 24 circuits, Indoor	2	EA	2,935		29.42	26	53	5,870	3,270		
Lightin	g Panel, 480 / 277 V, 3 phase, 24 circuits, Outdoor	3	EA	3,588		29.42	26	79	10,760	4,870		

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 27)

				Unit C	ost	Labor	MH	Total		\$		
Code	Description	Qty	Unit	Material	S/C	\$ Rate	Rate	MH	Material	Labor	S/C	Total
2	======================================		===									
-	Cable Trays - Separate power and instrumentation, with supports and covers	8,000	LF	12		29.42	0.41	3,318	95,930	204,520		300.4
	Rigid Metal Conduit - Various sizes	30,000	LF	4.59		29.42	0.30	9,102	137,610	561,050		698,66
	Nonmetallic Conduit - Various sizes	40,000	LF	2.17		29.42	0.11	4,400	86,970	271,220		358,1
	Power Cable - 600 V, 1/C #6 and larger	75,000	LF	1.23		29.42	0.012	897	92,140	55,290		147,4
	Power Cable - 600 V, multi-conductor, #3 and smaller	450,000	LF	0.17		29.42	0.004	1,848	78,270	113,910		192,1
	Power Cable - 1/C, 4.16 kV	60,000	LF	3.32		29.42	0.013	752	198,950	46,350		245,3
	Terminations - 480 V and instrumentation	18,000	EA	1.16		29.42	0.08	1,485	20,940	91,540		112,4
	Terminations - 4.16 kV	200	EA	1.75		29.42	0.12	24	350	1,480		1,8
	Conduit - Lighting	2,000	LF	2.97		29.42	0.26	519	5,950	31,990		37,9
	Conduit - Communications	1,000	LF	2.97		29.42	0.26	259	2,970	15,960		18,9
	Instrument and Control Wiring											
	7 conductor, 14 gauge	50,000	FT	1.59		29.42	0.015	770	79,362	47,460		126,8
	Twisted pair, 16 gauge	80,000	FT	1.11		29.42	0.012	977	88,711	60,210		148,9
	Twisted pair, 16 gauge, thermocouple	100,000	FT	1.11		29.42	0.012	1,221	110,889	75,260		186,1-
	25 pair, 16 gauge	20,000	FT	7.89		29.42	0.052	1,036	157,854	63,870		221,7
	25 conductor, 14 gauge	30,000	FT	4.13		29.42	0.034	1,023	123,935	63,060		186,9
	Terminations	2,000	EA	17.97		29.42	0.715	1,430	35,941	88,140		124,0
	Termination boxes	25	EA	435		29.42	11.0	275	10,871	16,950		27,8
	Armored cable connections	100	EA	54		29.42	1.1	110	5,436	6,780		12,2
	Lighting Wiring - 1 C THHN	12,000	LF	0.15		29.42	0.010	119	1,830	7,340		9,1
	Lighting Wiring - Metalclad cable	4,000	LF	1.30		29.42	0.18	704	5,220	43,390		48,6
	Communications Cable - Multiconductor	2,000	LF	1.11		29.42	0.015	31	2,220	1,910		4,1
	Communications Cable - Metalclad	46,000	LF	1.30		29.42	0.18	8,096	60,010	499,040		559,0
	Grounding - Wire, rods, cadwelds, and pads	80,000	LF	2.17		29.42	0.13	10,560	173,940	650,920		824,8
	Lightning Protection (allowance)	1	LT	10,871		29.42	880	880	10,870	54,240		65,1
	Cathodic Protection (allowance)	1	LT		108,715						108,710	108,7
	Heat Tracing - Freeze protection for water systems	1	LT	38,050		29.42	708	708	38,050	43,640		81,6
	Subtotal - Electrical								 6,794,670	4,084,810	108,710	10,988,1
Q	CONCRETE WORK											
1	Turbine-Generator Foundation											
	Concrete	650	CY	82		26.72	1.65	1,073	53,000	63,240		116,2
	Forms	5,200	SF	1.63		26.72	0.39	2,002	8,480	118,000		126,4
	Reinforcing Steel	39	Т	870		26.72	22	858	33,919	50,570		84,4
	Embedded Metal	9,750	LB	1.63		26.72	w/ forms		15,900			15,9
2	Cooling Tower Foundation											
	Concrete	250	CY	82		26.72	1.65	413	20,380	24,340		44,7
	Forms	15,500	SF	1.63		26.72	0.39	5,968	25,280	351,750		377,0
	Reinforcing Steel	30	Т	870		26.72	22	660	26,092	38,900		64,9
	Embedded Metal	1,000	LB	1.63		26.72	w/ forms		1,631			1,6

250 MWe Parabolic Trough Power Plant Total Field Cost Estimate (Sheet 28)

				Unit C		Labor	MH	Total		*		
Code	Description	Qty ====	Unit ===	Material	S/C	\$ Rate =====	Rate	MH =====	Material	Labor ======	S/C	Total
3	Footings and Foundations											
	Concrete	1,500	CY	82		26.72	1.65	2,475	122,300	145,880		268,18
	Forms	7,500	SF	1.63		26.72	0.39	2,888	12,230	170,220		182,450
	Reinforcing Steel	90	Т	870		26.72	22	1,980	78,275	116,700		194,97
	Embedded Metal	7,500	LB	1.63		26.72	w/ forms		12,230			12,23
	Subtotal - Concrete Work								409,716	1,079,600	0	1,489,316
S	SITEWORK											
1	Turbine-Generator Foundation											
	Excavation	813	CY			26.72	0.55	447		26,340		26,340
	Backfill and Compaction	390	CY	9		26.72	0.99	386	3,392	22,760		26,152
2	Cooling Tower Foundation											
	Excavation	500	CY			26.72	0.55	275		16,210		16,210
	Backfill and Compaction	333	СҮ	9		26.72	0.99	330	2,899	19,450		22,349
3	Footings and Foundations											
	Excavation	1,875	CY			26.72	0.55	1,031		60,780		60,780
	Backfill and Compaction	469	CY	9		26.72	0.99	464	4,077	27,350		31,427
4	Circulating Water Pipe											
	Excavation	2,700	CY			26.72	0.55	1,485		87,530		87,530
	Backfill and Compaction	900	CY	9		26.72	0.99	891	7,827	52,520		60,347
5	Fuel Oil Tank											
	Excavation	150	CY			26.72	0.55	83		4,860		4,860
	Backfill and Compaction	100	CY	9		26.72	0.99	99	870	5,840		6,710
	Subtotal - Sitework								19,065	323,640	0	342,705
	Subotal Sales Tax								79,386,791 5,874,623	16,334,820	440,300	96,161,911 5,874,623
б	TOTAL - ELECTRIC POWER GENERATION SYSTEM								85,261,414	 16,334,820	 440,300	 102,036,534
7	MASTER CONTROL SYSTEM											
·												
1	Distributed Control System 2,750 I/O Points, 4 operator stations, 6 programmable logic controllers DCS and PLC software	1	LT			36.85	1,760	1,760	2,000,000	121,560		2,121,560
	Sales Tax								148,000			148,000
7	TOTAL - MASTER CONTROL SYSTEM								2,148,000	 121,560		2,269,560

The public reporting budies for this collection of information is estimated to average 1 hour per response, including the information, searching existing data source of information, including suggestion of information. Executes Services and Communications Directate (07/4018), Respondent of information, including suggestion of the composition of information. The dots of information in the composition of information in the composition of information in the composition of information. The dots of information in the composition of informatin information in the composition of informati
July 2006 Subcontract Report January 20, 2005 – December 31, 2005 4. TITLE AND SUBITILE Nexant Parabolic Trough Solar Power Plant Systems Analysis: Task 1: Preferred Plant Size 5a. CONTRACT NUMBER DE-AC36-99-GO10337 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6c. AUTHOR(S) B. Kelly 5d. PROJECT NUMBER NEL/SR-550-40162 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Nexant, Inc. 101 Second St., 11 th Floor San Francisco, CA 94105-3672 8. PERFORMING ORGANIZATION REPORT NUMBER LDC-5-55014-01 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NATIONAL REPORT NUMBER LDC-5-550-40162 12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Nexant Parabolic Trough Solar Power Plant Systems Analysis: Task 1: Preferred Plant Size 5a. CONTRACT NUMBER DE-AC36-99-GO10337 Task 1: Preferred Plant Size 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5c. PROGRAM ELEMENT NUMBER 8. Kelly Sd. PROJECT NUMBER NREL/SR-550-40162 5e. TASK NUMBER CP06.1301 Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Nexant, Inc. 101 Second St., 11 th Floor San Francisco, CA 94105-3672 8. PERFORMING ORGANIZATION REPORT NUMBER LDC-5-55014-01 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 10. SPONSOR/MONITOR'S ACRONYM(S) NREL 11. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 11. SPONSORING/MONITOR'S ACRONYM(S) NREL 12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service NREL/SR-550-40162
Nexant Parabolic Trough Solar Power Plant Systems Analysis: DE-AC36-99-GO10337 Task 1: Preferred Plant Size 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5c. PROGRAM ELEMENT NUMBER 5c. PROJECT NUMBER NREL/SR-550-40162 5e. TASK NUMBER CP06.1301 5f. WORK UNIT NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Se. TASK NUMBER Nexant, Inc. 101 Second St., 11 th Floor San Francisco, CA 94105-3672 In SPONSORI/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 10. SPONSOR/MONITOR'S ACRONYM(S) NREL 11. SPONSORI/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 11. SPONSOR/MONITOR'S ACRONYM(S) NREL 11. SPONSORI/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 11. SPONSOR/MONITOR'S ACRONYM(S) NREL 11. SPONSOR/MONITORING AGENCY NUMBER NREL/SR-550-40162 11. SPONSOR/MONITORING AGENCY NUMBER NREL/SR-550-40162 12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service 14. SPONSOR/MONITORING AGENCY REPORT NUMBER
5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5c. PROJECT NUMBER 8. Kelly 5c. TASK NUMBER NREL/SR-550-40162 5c. TASK NUMBER CP06.1301 5f. WORK UNIT NUMBER Nexant, Inc. 101 Second St., 11 th Floor San Francisco, CA 94105-3672 5f. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 11. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NREL/SR-550-40162 12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service
6. AUTHOR(S) B. Kelly 6. AUTHOR(S) B. Kelly 5. Kelly Set PROJECT NUMBER NREL/SR-550-40162 5e. TASK NUMBER CP06.1301 CP06.1301 5f. WORK UNIT NUMBER Set PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Nexant, Inc. 101 Second St., 11 th Floor San Francisco, CA 94105-3672 8. PERFORMING ORGANIZATION REPORT NUMBER LDC-5-55014-01 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 10. SPONSORING/MONITORING ACRONYM(S) NREL 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162
B. Kelly NREL/SR-550-40162 Se. TASK NUMBER CP06.1301 Se. TASK NUMBER CP06.1301 Sf. WORK UNIT NUMBER Sf. WORK UNIT NUMBER 101 Second St., 11 th Floor San Francisco, CA 94105-3672 8. PERFORMING ORGANIZATION REPORT NUMBER LDC-5-55014-01 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 10. SPONSORING/MONITOR'S ACRONYM(S) NREL 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162
CP06.1301 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Nexant, Inc. 101 Second St., 11 th Floor San Francisco, CA 94105-3672 8. PERFORMING ORGANIZATION REPORT NUMBER LDC-5-55014-01 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 10. SPONSORING/MONITOR'S ACRONYM(S) NREL 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162
5f. WORK UNIT NUMBER 5f. WORK UNIT NUMBER 5f. WORK UNIT NUMBER 5f. WORK UNIT NUMBER Nexant, Inc. 101 Second St., 11 th Floor San Francisco, CA 94105-3672 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-3393 11. SPONSORING/MONITORING AGENCY NAME(S) NREL 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162
Nexant, Inc. 101 Second St., 11th Floor San Francisco, CA 94105-3672REPORT NUMBER LDC-5-55014-019. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401-339310. SPONSOR/MONITOR'S ACRONYM(S) NREL11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-4016211. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-4016212. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162
National Renewable Energy Laboratory NREL 1617 Cole Blvd. 11. SPONSORING/MONITORING Golden, CO 80401-3393 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162 12. DISTRIBUTION AVAILABILITY STATEMENT NREL/SR-550-40162
Golden, CO 80401-3393 11. SPONSORING/MONITORING AGENCY REPORT NUMBER NREL/SR-550-40162 12. DISTRIBUTION AVAILABILITY STATEMENT National Technical Information Service NREL/SR-550-40162
National Technical Information Service
5285 Port Royal Road Springfield, VA 22161
13. SUPPLEMENTARY NOTES NREL Technical Monitor: H. Price
14. ABSTRACT (Maximum 200 Words) Subcontract report by Nexant, Inc., regarding analysis of plant size of solar parabolic trough plants.
15. SUBJECT TERMS
concentrating solar power; solar parabolic trough; solar; solar thermal electricity
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS PAGE OF ABSTRACT OF PAGES