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Project Objective:  The project goal is to understand the operating mechanisms underlying the 
performance of polymer hybrid photovoltaics to enable the development of a photovoltaic with a 
maximum power conversion efficiency over cost ratio that is significantly greater than current PV 
technologies.  Plastic or polymer-based photovoltaics can have significant cost advantages over 
conventional technologies in that they are compatible with liquid-based plastic processing and can 
be assembled onto plastic under atmospheric conditions (ambient temperature and pressure) using 
standard printing technologies, such as reel-to-reel and screen printing.  Moreover, polymer-based 
PVs are light weight, flexible, and largely unbreakable which make shipping, installation and 
maintenance simpler. 
 
Executive Summary of Project Results:  This final report summarizes the research completed 
by Sue Carter’s group in the physics department at the University of California, Santa Cruz. 
Major collaborators included J. Campbell Scott at IBM Almaden Research Center, Garry 
Rumbles at the National Renewable Energy Laboratories, Melissa Kreger at Add-vision, and H. 
Horhold at the University of Jena, Germany.  This research comprises the PhD dissertations of 
Yuko Nakazawa and Stephanie Chasteen who were both supported under this contract.  This 
contract also supported Melissa Kreger while she was postdoctoral researcher in Carter’s 
laboratory.  In addition, several undergraduate students, including Tosan Ombegedho, Peter 
Journey-Kaler, Gareth Fortser, Charles Dearie, and Samuel Bergenher completed research on 
this contract. The contract resulted in six publications currently published or in press, and 
another two publications that are in the final process of submission.  Furthermore, a numerical 
simulation program was developed (in collaboration with IBM) to fully simulate the performance 
of multicomponent polymer photovoltaic devices, and a manufacturing method was developed 
(in collaboration with Add-vision) to inexpensively manufacture larger area devices.    
 
The research completed under this contract included research into higher conversion efficiency 
polymer photovoltaics that maintained longer lifetime and reliability with an inexpensive 
manufacturing process. Studies were completed on novel PPV and polythiophene-based hole 
transporting polymers blended or layered with electron transporting polymers, such as CN-ether-
PPV, as well as TiOx, and C60-based nanoparticles.  Blends with semiconducting nanoparticles 
were also studied; however, these experiments were not completed by the end of the contract.  
Several different polymer hole transport materials were developed and characterized in an 
attempt to improve charge transport and increase absorption across visible spectrum.  The use of 
different electrode geometries and tandem structures to improve device efficiency was evaluated. 
Different TiOx, and C60-based morphologies were tested to understand their impact on charge 
dissociation and transportation.  The completed characterization studies on the three main classes 
of photovoltaic devices included temperature dependence of PV device performance, 
dependence of device performance and degradation on operation conditions and device 
morphology, evaluation of the how the device performance depends on excited state dynamics 
through steady state and time resolved photoluminescence measurements (in collaboration with 
NREL), numerical simulations of device performance (in collaboration with IBM), and the 
viability of manufacturing the structures using a low cost printing process (in collaboration with 
Add-vision).    
 
The main outcome and conclusions of these results are: 
• Polymer/PCBM (i.e. C60) blends resulted, as expected, in the highest power conversion 
efficiency (~4%) of all device structures studied due to greater mobility of C60.  Much greater 
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power conversion efficiencies can be expected in this system through optimization of blend/layer 
morphology.   
• Exciton dissociation is insufficient for optimization of device performance.  Improved exciton 
generation rate, through the presence of exciplexes, or layer thickness control, and charge 
transport pose more important limitations to performance. 
• Emissive interchain excitations may serve as useful sources of separable charge, whereas 
poorly emissive single-chain excitations are difficult to quench due to competing non-radiative 
rate constants. 
• For blended structures 
• In blends, the fill factor a, the maximum open-circuit voltage, Voc, is determined by HOMOdonor 
and LUMOacceptor energy level offsets and further limited by the contact barrier formation.  For 
layers, Voc is increased above this limit due to a substantial diffusion counter-current that is 
largely absent in blends.nd short-circuit current, JSC, are strongly a function of charge carrier 
mobility; however, in layers, both quantities saturate with increasing mobility and are more 
strongly determined by the exciton generation rate near an interface. 
• With currently developed materials, power efficiencies greater than 12% should be achievable 
in blends through graded (rather than homogeneous) morphologies or in layered structures with 
blended interfaces; however, clean layered structures are limited to significantly lower 
efficiencies without further improvements in absorption of photons across the solar spectrum.  
• Polymer-based photovoltaics, with metal-oxide (TiOx) interlayers, can be manufactured on 
plastic substrates with all layers being deposited and patterned using low cost liquid-based 
processing under ambient conditions; however, a reduction in power efficiency up to 50% can 
result from the lower work function and/or poorer conductivity resulting from the printable 
metals.  Larger area device fabrication favors manufacturing methods such as slot coating and 
gravure over screen printing. 
• Polymer devices using metal-oxide (i.e. TiOx) interlayers are considerably more stable than 
structures based utilizing doped-polymer (i.e. PEDOT-PSS) interlayers.   
• Morphology (including thickness) is critical in all aspects of device performance, from 
deactivation of the excited state to charge transport.  Poor control over morphology is the critical 
factor in limiting the power conversion efficiency in polymer-based photovoltaic devices.   
 
High Conversion Efficiency in Polymer Photovoltaics 
 
Device Fabrication 
Devices were fabricated inside an inert glove box atmosphere by spin casting the polymer hybrid 
solution onto a prepatterned ITO on glass or plastic substrate, that has been coated with the 
appropriate electron and or hole transporting layer, and then evaporating the top electrode.    The 
ITO is either precoated with a titanium oxide sol-gel layer (sintered at 400 C) or a PEDOT-PSS 
layer, and the evaporated top electrode is either Au or Al, respectively.  A flat band diagram for 
the two structures is shown in Fig. 1 (left side).  J-V curves in the dark and under white-light 
conditions (100 mW/cm2) were taken inside the glove box.  Absorption and steady state PL 
measurements were taken using Varian and Perkin Elmer spectrometers.  Additional steady state 
and time-resolved PL were taken at NREL. 
 
Materials 
For the hole transport layers, a variety of PPV and polythiophene materials were used with 
different mobilities, band gaps, and crystallinity.  Liquid crystalline polymers were synthesized 
to improve charge mobility, but did not result in improved device performance.  In addition, 
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smaller bandgap polymers that incorporated polythiophene groups into the PPV backbone were 
synthesized in order to increase the absorption of solar light.  This material resulted in similar 
device performance as their larger bandgap PPV-based counterparts.  The overriding factor that 
dictated the final device performance was the mobility of the hole transport polymer and the 
choice of the electron transport material.  Much of our results used M3EH-PPV (Fig. 1, top 
middle), a unique derivative of the much more commonly studied MEH-PPV, but with a 
significantly higher mobility due to increased crystallinity induced by the additional insoluble 
monomer unit.   For the electron transporter, CN-ether-PPV, PCBM (Fig. 1, top middle), TiOx 
sol-gel and nanoparticles (Fig. 1, right), and PbS nanoparticles (not shown) were studied.   
 
 

         

Figure 1: Left: The energy 
diagrams for two different device 
architectures studied.  In 
addition, LiF was studied as an 
interlayer between polymer and 
aluminum (Al). Middle-top: 
Structures of some materials 
used in the studies.  Middle-
bottom: Relative energy levels of 
materials.  Right: AFM images 
of TiOx surface made from 
smooth sol-gel layer and rougher 
nanoparticle layer.

 
Device Optimization and Performance  
In Figure 2 (right), typical current-voltage (J-V) curves for optimized polymer hybrid blend and 
layered devices are shown, revealing a more than 3x improvement in Jsc over neat M3EH-PPV 
films on TiO2 and 13x over M3EH-PPV on PEDOT.  Polymer-PCBM blends result in a further 
4x enhancement.  Optimized devices had film thickness ~ 30 ± 5 nm, except for polymer layers 
for which the best device has at thickness of 20 nm M3EH-PPV/50 nm CN-ether-PPV.  Blend 
performance was optimal at 50% and 80% blend wt% for polymer and PCBM blends, 
respectively.  TiOx devices showed consistently the highest fill factors, with values >60% being 
observed for some devices at lower light intensities.  
 
Figure 2 (left) shows changes in the short circuit current density, Jsc, and fill factor, FF, with 
blend wt%.  For polymer blends, the fill factor is limited by poor transport in CN-ether-PPV due 
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to the inherent properties of PPV polymers and the presence of the ether linkage that disrupts the 
conjugation.  This effect results in a rapid decrease in the fill factor with increasing CN-ether-
PPV percentage that is offset, in part, by the greater exciton dissociation resulting from the 
blended hybrid structure.  Both the fill factor and Jsc increase in PCBM as electron transport 
improves with increased PCBM percentage. The maximum power efficiency observed was 
typically ~3% for a 1:4 M3EH:PCBM blend.  This result was lower than the state-of-art values 
mainly due to the smaller fill factors observed for M3EH blends compared to the regioregular 
polythiophene blends. We note that while regioregular polythiophene blends were also 
fabricated, the results are not included in this study because the materials were found to yield 
much less consistent results than the PPV-derivatives.  Simulations (discussed below) combined 
with our experimental studies indicate that much higher power efficiencies (>10%) are 
obtainable for these class of materials by controlling and improving the blend morphology.   
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Figure 2: Right: Typical IV curves for reproducible optimized 
devices utilizing the different device structures and materials 
shown in Figure 1.  Left: Evolution of the short circuit current 
(Jsc) and fill factor (FF) with weight % for blends of M3EH-
PPV with (A) CN-ether-PPV and (B) PCBM  

Tandem Devices 
In general, device performance was found to be limited by a trade off between photon absorption 
and charge transport which is optimized by thicker or thinner films, respectively.  In an attempt 
to overcome this limitation, tandem devices consisting of layers of two polymer PV cells were 
fabricated and studied.  Here, challenges were encountered in trying to optimize device 
performance while maintaining the low cost fabrication by making every layer liquid 
processible.  The liquid deposition of the second PV cell on top of the first PV cell was shown to 
detrimentally affect its performance, leading to an overall reduction in device performance as the 
first polymer PV cell was shown to contribute over 75% of the overall power efficiency.   
 
Temperature Dependence of Device Performance 
The temperature dependence of the polymer PV were studies from ~100 K to 400 K in order to 
understand how the device operation and stability were affected by temperature (Figure 3).  
Since the polymer mobility changes significantly with temperature T (Fig. 3, left) according the 
formula µ ~ µ*exp(-∆/kT)exp(γE1/2) where ∆ is the hopping activation energy γ is the field-
prefactor, and E is the electric field across device, these measurements also provide insight on 
how changes in the polymer’s mobility affects device performance.  It was found that the short 
circuit current (Isc) is exponentially dependent on temperature with an activation ∆SC with small 
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variance for a wide range of materials with similar device architectures.  Similarly the 
temperature dependence of the open circuit voltage (Voc) was shown to be largely linear, with the 
maximum Voc determined by the difference in the HOMO level of the donor, LUMO level of the 
acceptor, binding energy ΦB (Fermi Level pinning) and ∆SC.  The fill factor increases with 
increasing mobility as expected.  It is noted that device failure tended to occur a few degrees 
below the glass transition temperature (~300 K to 350 K)) and was worse for devices containing 
LiF.  Temperature-induced device failure was not observed for TiOx-based devices.  The results 
of the temperature dependent studies for 3 different materials are given in Table 1. 
 

 
Table 1: Summary of selected results from temperature-dependent studies 

*Maximum Voc = 1/e(HOMOdonor – LUMOacceptor-ΦB) - ∆SC   where ∆o = HOMOdonor – LUMOacceptor 

Constituent polymer blends Anode  ∆sc Voc
* ∆o-∆sc ∆o-∆sc−ΦΒ

Thio-M3-PPV:PCBM 
Al  
 
LiF/Al  

62 meV 
 
36 meV 

0.95 – 0.0012T (0.6 
sat) 
1.14 -0.0016T 

1.14 0.68 

M3EH-PPV:CN-ether-PPV 
Al  
 
LiF/Al  

76 meV 
 
70 meV 

(1.22 sat) 
 
1.65-0.0014T (1.36 
sat) 

1.63 
 
1.63 

1.27 
 
1.36 

P3HT:PCBM Al 
LiF/Al  

75 meV 
41 meV 

1.37 – 0.0014T   
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Figure 3: Left: Changes in M3EH-PPV 
mobility and γ with T.  Middle: T-
dependence of Jsc for  PCBM blend 
(squares), CN-ether-PPV blend 
(triangles) and a TiOx layered devices 
(open diamonds), which is described 
by equation for Isc (left).  Right: T-
dependence of fill factor and Voc for 
blends with and without LiF interlayer. 
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Numerical Simulations of Organic PV Devices 
A quasi-1D model was developed to model the performance of layered, blended, and partially 
blended organic PVs which is described in more detail in publications.  For blends, a change 
between phases was allowed at every position throughout the device, and blending at layer 
interfaces was modeled using mass diffusion into the adjacent layer with 100% being a 
homogeneous blend.  This model enables the determination of device performance as a function of 
the materials absorption (given index of refraction n & dispersion k), electrode’s work function, 
the organic HOMO and LUMO levels and mobility, the device thickness and material morphology, 
ambient temperature, and finally the light intensity and spectrum. 
 
As shown in Fig. 4 (top), the short circuit current and power efficiency is a strong function of the 
blend fraction and mobility, and the best performance is achieved for 67% blend fraction.  Layered 
structures (0%) only obtain a power efficiency of <3% even for high mobility materials due to 
poor exciton dissociation through the bulk, and homogenous blends are limited to a maximum  
 
 

Figure 4: Top: Short circuit current (left) and power efficiency and Voc (right) as a function of blend fraction 
for polymer/polymer blends.  Bottom: Comparison of simulations and experiment for layers (left) and 
exciton generation rate for two different layer thickness (right) with 25 nm/50 nm resulting in significantly 
more exciton generation at the polymer interfaces, and ultimately better performance. 

 
 

 6



 

power efficiency of ~7.5% due to limits in both charge transport and Voc.  The decrease in Voc with 
increasing blend fraction is due to a decrease in the role of the diffusion counter-current in blends.  
Higher power efficiencies of ~12% result from partially blended (i.e. graded) structures as these 
systems optimize exciton generation, dissociation and charge transport.  Excellent qualitative 
agreement between experimental and simulation are obtained for both layers and blends (Fig. 5 left 
bottom), with quantitative differences due to mobility.  Fig. 5 (right bottom) reveals that optical 
reflection/interference effects can result in large differences in exciton generate rate near interfaces  
and is a determining factor optimizing the performance of layers. 
 
Additional Research:  Steady State and Time Resolved Photoluminescence 
The steady state PL was strongly quenched for all layers and blends, with values ranging from 
70% for polymer layers to 95% for PCBM/polymer blends.  For polymer/polymer systems, the 
PL and time-resolved data indicate the presence of exciplex formation that can result in exciton 
scavenging and increased dissociation (Figure 5).  For PCBM blends, exciplex formation is not 
observed; however, a large shift in PL spectrum occurs, due to an effective dilution in the 
M3EH-PPV at high PCBM wt%. 
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Figure 5:  Left: Normalized PL for blend and layered films excited at 540 nm.  ∆PL is a 
subtraction of the M3EH-PPV spectrum from that of the 80% blend, revealing exciplex 
formation in polymer blends. Right: Normalized PL for PCBM blends. 
 
 
Time Resolved Photoluminescence 
In the left part of Figure 6, the time-resolved PL data for polymer-polymer layers and blends 
(top) and for PCBM blends (bottom) are shown. In Figure 6 (right) and Table 2, the decay times 
for the pristine polymers as well as the blended and layered structures are summarized.  All 
blends and layers show a very rapid decay time (<0.05 ns).   For polymer blended structures, 
significant exciton quenching occurs in both the electron- and hole-transporting polymers due to 
the interpenetrating morphology; however, the lack of complete quenching limits the achievable 
short-circuit currents.  In layered structures, decay times were longer than for blends; thus 
exciton dissociation and charge transfer is more efficient in blended than in layered devices. 
Both steady-state and time-resolved data indicate that charge transfer occurs to an intermediate 
exciplex state in blended and layered structures of CN-ether-PPV with M3EH-PPV.  The 
exciplex is characterized by a decay component of ~ 2.0 ns which predominates at 700 nm 
emission – the location of a broad, featureless steady-state spectral feature attributed to exciplex 
emission.  Formation of the exciplex aids device performance, as indicated by the predominance 
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of the exciplex peak (and notable absence of M3EH-PPV emission) in steady-state spectroscopy 
on particularly efficient photovoltaic devices. The exciplex may thermally re-excite the M3EH-
PPV exciton, providing an additional route for charge separation, or dissociate directly under the 
influence of an electric field.  
 
Photoluminescence decay from PCBM aggregates is detected in all heterojunctions.  Decay from 
the PCBM phase is characterized by a time constant of 1.0 - 1.9 ns (see Table 2).  PCBM 
quenches the excited state more efficiently than CN-ether-PPV, but the dominant decay time of 
M3EH-PPV (0.20 ns) is only ~75% for both systems, indicating incomplete quenching. Contrary 
to the naïve assumption that more PCBM should result in increased charge transfer (shortening 
the lifetime), the rate of decay increases as the wt% of PCBM in the blend is decreased, counter 
to the enhanced device performance at high wt% of PCBM in the blend (Table 2). These results 
indicate the importance of charge transport over exciton dissociation , on device performance. 
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Figure 6: Left: Time-resolved PL data for polymer-polymer layers and blends (top) and for 
PCBM blends (bottom).  Note that all the layers and blends exhibit an initial faster decay than the 
neat M3EH-PPV film although the average decay time is longer (except for 20 wt% PCBM 
blend).  The CN-ether-PPV decay components are readily quenched, but the ~0.45 ns M3EH-PPV 
decay remains for all material combinations (see Table 2).  Right:  Summary of the yield of the 
major decay components (M3EH-PPV, PCBM, and exciplex) as a function of the CN-ether-PPV 
wt % (top) and the PCBM wt % (bottom). 
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Table 2: Summary of decay times of CN-ether-PPV and PCBM blends compared to neat film results.  
 Film η τ1 (ns) τ2 (ns) τ3 (ns) τave 

(ns) 
Q 

Pristine polymers 
M3EH-PPV 

0.04% 0.20 
(43%) 

0.45 
(53%) 

1.7 
(3%) 0.38 

 

 
CN-ether-PPV 

N/A 0.30 
(2%) 

4.3 
(26%) 

12.2 
(73%) 10.0 

 

CN-ether blends 50 wt% CN-ether 
w/ M3EH-PPV 

0.86% 0.05 
(51%) 

0.46 
(20%) 

2.0 
(22%) 1.0 

75% 

 M3EH/CN-ether 
layer 

0.89% 0.05 
(39%) 

0.46 
(17%) 

2.0 
(27%) 1.8 

75% 

TiOx layer 
TiOx/M3EH-PPV 

0.5% 0.12 
(42%) 

0.32 
(44%)  0.35 

0% 

PCBM blends 80 wt% PCBM w/ 
M3EH-PPV 

3% 0.05 
(36%) 

0.50 
(49%) 

1.9 
(16%) 0.6 

75% 

 20 wt% PCBM w/ 
M3EH-PPV 

0.9% 0.02 
(95%)  

1.0 
(5%) 0.07 

90% 

 
New Materials for Luminescent Solar Concentrators 
 The use of Luminescent Solar Concentrators (LSC) to generate electricity from solar 
radiation was introduced around 30 years ago and was based on earlier work that used 
fluorescence radiation converters as an inexpensive method to detect scintillation light over large 
areas.  A LSC uses a photoluminescent material to absorb the suns photons, remit these photons 
at longer wavelengths, waveguide the emitted photons down a large area waveguide structure, 
and then convert the longer wavelength photons to electricity using strips of silicon-based 
photodetectors.  The advantage of this technology is that one can use very inexpensive materials, 
usually organic dyes imbedded in a polymer matrix, to absorb the solar light and concentrate it; 
therefore, a much smaller area of the expensive silicon PV is needed.  The device performance, 
however, was found to be severely limited by self absorption of the emitted light, absorption 
over solar spectrum and the dye efficiency; the highest power efficiencies obtained on the a LSC 
was reported in 1985 to be 4% using a two-stack concentrator and a relatively expensive GaAs 
solar cells. Since then, quantum dots have been discussed as new LSC’s and one group has 
started field testing organic LSCs although the power efficiencies are still too low for viable 
commercialization.  
 
The power efficiency of a LSC cell is determined by the following formula:   
ηLSC = ηPL*ηabs*ηWG*ηSi

where ηPL is the edge photoluminescence efficiency (includes self absorption), ηabs is the fraction 
of the solar spectrum absorbed, ηWG is the fraction of light that is waveguided, and ηSi is the 
power efficiency of the silicon detector at the wavelength of the emitted light.  To achieve a solar 
power efficiency grater than 10% using standard silicon detectors, the luminescent material 
should have a ηPL >90%, and a ηabs >67% with minimal self absorption.  Our group at UCSC has 
identified a small molecule dye with sufficient Stokes-shift to minimize self-absorption and solar 
absorption, as shown in Figure 7; however, its ηPL is on the order of 20%.  Conversely, a 
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conjugated red-emitting polyfluorene material has also been identified that has a high ηPL 
(>90%); however, the absorption across the visible and Stoke’s shift is too limited.  The ηPL of 
the small molecule dye can be increased by using surface enhanced fluorescence effects and/or 
surfactants, and the absorption across the visible (and Stoke’s shift) for the semiconducting 
polymer-based system can be improved through the incorporation if IR-emitting organic 
chromophores or inorganic quantum dots.  This research has now obtained funding from the 
PIER program administered by the CEC and the State of California.   

 
 
 
 
 
 
 
 
 

 
 
 
 
 
Long Lifetime and Reliability With an Inexpensive Manufacturing Process  
 
Inexpensive Manufacturing Process 
Devices were constructed on PET plastic substrates (Vitex) to 
compare with devices manufactured on glass (Figure 8, top).  
The power efficiency is reduced less than 10% from cells made 
on glass substrates.  Methods were also investigated to make a 
fully printable solar cell under atmospheric conditions by 
eliminating the need for an evaporated top electrode.  Because 
materials with work function similar to Al are not printable, full 
printability is only achievable with the TiOx layered structures.  
Two printable electrodes were studied: a solvent soluble silver 
paste and a water soluble conducting polymer, PEDOT-PSS.  
Working devices were fabricated using both of these top 
electrodes although the silver has a lower open circuit voltage 
due to its lower work function than PEDOT-PSS and Au 
(Figure 8, bottom). The power efficiency is normally reduced by 
a factor of 50% or more from those cells made with an 
evaporated top Au electrode.  Large areas devices (>50 cm2) 
were also fabricated using a complete printing process in 
collaboration with Add-vision.  Using this process, the thin 
larger areas devices had difficulties with shorting and the thick 
devices suffered from low power efficiency.  New methods to 

Figure 7: Top: Normalized 
absorption (abs) and light 
emission (rad) for an organic 
laser dye (LDS821) and a light 
emitting polymer (Red PF), 
overlayed with Si’s EQE.  
Bottom: Typical design for a 
LSC.  
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liquid deposit smooth larger area solar cells and to improve the 
overall power efficiency of these inexpensive devices are now 
being developed under an NSF STTR Phase I grant. 
 
Lifetime Properties of Device Structures 
Lifetime behavior of all three types of devices (polymer 
blends, TiOx layers, and PCBM blends) was monitored for 
changes in their IV-curves and quantum efficiency upon 
exposure to solar radiation.  The blended devices were 
observed to degrade the fastest (typically <30 days), with 
PCBM blends being the most unstable, while the TiOx layers 
were stable for the duration of the test (>80 days).  The rapid 
degradation of the blends appeared to be caused by UV-
induced damage to the PEDOT-PSS and PPV polymers that 
was mitigated by including TiOx in the device structure.  The 
rapid degradation of the PCBM blend devices were also 
observed for devices kept in a dark dry nitrogen atmosphere. 
The significantly short shelf life (7 days) of PCBM blend 
(Figure 9, top) was likely due to the chemical change in 
PCBM itself or a chemical reaction with PCBM.  In those 7 
days, the Isc decreased by 60 % while the Voc remained 
constant.  In contrast, the TiOx devices showed shelf life of 
over one year (Figure 9, bottom).  The Voc and FF both 
increased while Isc remained constant.  The largest increase in 
Voc occurred within the first 30-60 days, and eventually 
reached ~0.8 V.  This is due to the evolution of Au-polymer 
interface.  The interface between the soft gold and polymer 
surface heals over a period of time due to slow diffusion, 
resulting in a better ohmic contact.  In contrast, Al and 
printed electrodes appear to form a good initial contact upon 
deposition.  

TiOx//Thio//Au 

PEDOT//PCBM:Thio//Al 

Fig. 9: Shelf-life of PV cells 
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