

Silicon heterojunction solar cell characterization and optimization using *in situ* and *ex situ* spectroscopic ellipsometry

Dean Levi, Eugene Iwaniczko, Matthew Page, Howard Branz, and Tihu Wang NREL, Golden CO USA

2006 IEEE 4th World Conference on Photovoltaic Energy Conversion May 7-12, 2006 Hilton Waikoloa Village, Waikoloa, Hawaii

> A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

National Renewable Energy Laboratory

NREL/PR-520-39986

Innovation for Our Energy Future

Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.

SHJ Solar Cell Fabrication

Flat wafers $\eta = 16.9\%$ Textured wafers $\eta = 17.8\%$

HWCVD deposition system: i, n, and p layers are deposited in separate chambers

Fabrication and characterization sequence

in situ ellipsometry of a-Si:H growth

- Surface roughness indicates growth dynamics
- Optical properties reveal structural and electronic properties

Evolution of surface roughness: R_s

- The evolution of R_s with bulk film thickness d_b provides insight into the film growth process.
- R_s can be represented as a function of d_b

$$R_{s} \propto d^{\beta}$$

Universality classes $\beta = 0.5$ random deposition $\beta = 0.25$ RD w/diffusion $\beta = 0$ RD w/relaxation

Growth exponent for i-layer growth

- β is nearly constant for $T_s < 145^{\circ}C$
- Abrupt increase in β above 145°C indicates change in growth mode – uc-Si deposition

Optical properties vs T_s

• i layers are deposited on oxide-free <100> c-Si etched in 5% HF

- 73C 126C layers all a-Si:H
- 144C layer is mixed a-Si:H uc-Si:H
- 162C layer is epitaxial c-Si

Analysis of i-layer $\epsilon_2 T_s$ dependence

 $d\epsilon_2/dT_s = -210 \text{ mev}/100^{\circ}\text{C}$ $dE_g/dT_s = -60 \text{ meV}/100^{\circ}\text{C}$

 $\Delta(d\epsilon_2/dT_s) = 17 \text{ meV} / 1 \text{ at.}\% \text{ C(H)}^*$ 12% drop in C(H) w/100°C increase in T_s

* G.F. Feng, et al., Phys. Rev. B 45, 9103 (1992)

ex situ ellipsometry of finished devices

- Ellipsometry measurement and analysis
- optical model to calculate R,T,A for each layer
- Compare calculations with device performance
 - SHJ compared w/diffused junction
 - SHJ devices w/different p-doping

ex situ SE on finished devices

Comparison of SHJ w/diffused junction cell

• Two devices are identical except for front junction (both use Al-BSF contact)

ex situ SE: p-doping comparison

- 2 nominally identical devices •
- 2 sccm vs 18 sccm B_2H_6 •

		Time
Surface roughness	56 Å	
ITO	752 Å	
p layer ($2 \operatorname{sccm} B_2 H_6$)	118 Å	50 sec
i layer (100°C)	35 Å	9 sec
c-Si	200 µm	

Dep.

		<u>Dep.</u> Time
Surface roughness	142 Å	<u>11110</u>
ITO	766 Å	
p layer (<mark>18 sccm B₂H₆</mark>)	<mark>96</mark> Å	50 sec
i layer (100ºC)	35 Å	9 sec
c-Si	200 µm	

Device optical performance comparison

- Layer thicknesses and optical constants determined by *ex situ* SE
- Primary difference is p layer doping

 flow rate of B₂H₆
- Optical model enables calculation of contribution of each layer

Wavelength (nm)

% spectral loss: 18 sccm vs. 2 sccm device = 4.4%

component	% contribution
p-layer abs	38
i-layer abs	14
reflection	34
ITO abs	14

Summary

- *in situ* SE gives insight into growth mechanisms and accurate layer thickness
- ex situ SE measures completed device structures to determine integrated optical properties
- The combination of *in situ* and *ex situ* SE provides a powerful method for pinpointing the effects of processing changes in actual SHJ devices and guiding optimization.

Acknowledgements

- This work is funded under DOE Contract No. DE-AC36-99GO10337.
- Thanks to Russel Bauer, Lorenzo Roybal, Helio Moutinho, Bobby To, Yanfa Yan, and Qi Wang of NREL, and to Ajeet Rohatgi and Vijay Yelundur of Georgia Tech.

A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy