Advanced Fuel Cell Membranes Based on Heteropolyacids

John A. Turner and F. J. John Pern
Hydrogen and Electricity, Systems and Infrastructure Group
National Renewable Energy Laboratory
Golden, CO 80401-3393

Andrew M. Herring* and Steven F. Dec**
* Department of Chemical Engineering and
** Department of Chemistry and Geochemistry
Colorado School of Mines
Golden, CO 80401-1887

May 18, 2006

This presentation does not contain any proprietary or confidential information

Project ID # FC4

NREL/PR-560-39972
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the “Government”) retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.
Overview

Timeline
• Project start date: FY 2005
• Project end date: tbd
• Percent complete: tbd

Budget
• Total project funding
 – DOE share: $300k
• Funding received in FY05:
 – $150K (0.3 FTE)
• Funding for FY06:
 – $150K (0.3 FTE)

Targets
• Low humidity operation (25% RH).
• High conductivity ~0.1 S/cm
• Cost $40/m²

Barriers
• Barriers addressed
 – O. Stack materials and manufacturing costs
 – P. Durability

Partner/Subcontract
• Colorado School of Mines
 – Prof. Andrew M. Herring
 – Dr. Steven F. Dec
Objectives

• Develop the methodology for the fabrication of 3D cross-linked, hydrocarbon-based membranes using immobilized heteropolyacids (HPAs) as the proton conducting moiety.
 – Conductivity ~0.1 S/cm at 120°C and <1.5 kPa H₂O

• Develop immobilization technology based on covalent attachment of HPAs to oxide nano-particles.

• Acquire an improved understanding of HPAs and their salts made by custom synthesis.
 – HPAs make up a class of inorganic proton conductors that exhibit high proton conductivity at low humidity (below 25% RH) and at elevated temperatures (well above 100°C).

• Conduct relevant characterizations of the membranes to better understand their structural, chemical, and thermal properties/stability and proton conductivity.
HPAs: High H⁺ Conductivity, High Thermal Stability; Vast Structural Diversity; Known Redox Catalysts

Keggin
\[[\text{SiW}_{12}\text{O}_{40}]^{4-}\]

\[
\text{H}_4\text{SiW}_{12}\text{O}_{40} \cdot 26\text{H}_2\text{O} \\
\text{(W12-STA)}
\]

Dawson
\[[\text{P}_2\text{W}_{18}\text{O}_{62}]^{6-}\]

\[
\text{H}_6\text{P}_2\text{W}_{18}\text{O}_{62} \cdot x\text{H}_2\text{O}
\]

Lacunary (allows easy attachment points)
\[[\text{SiW}_{11}\text{O}_{39}]^{8-}\]

\[
\text{H}_8\text{SiW}_{11}\text{O}_{39} \cdot 26\text{H}_2\text{O} \\
\text{(W11-STA)}
\]
Strategies for Immobilizing HPAs

A. Binding Approaches:
 1. Covalent bonding to oxide nano-particles insitu, which can bond covalently to, or embed physically in, a polymeric matrix
 2. Direct embedding in a polymeric matrix
 3. Covalent bonding directly to a polymeric matrix (CSM/3M collaboration, poster #FCP-6)

B. Modification of Lacunary HPAs:
 1. By bonding with functional silanes that can then be cross-linked or polymerized

C. Fabrication Approaches:
 1. Sol gel method
 2. Immobilized via silylation onto supporting particles
 3. Simple blending

D. Polymeric Matrix:
 1. Organic
 2. Inorganic
 3. Organic-inorganic hybrid

Ref. 14: “Heteropoly and Isopoly Oxometalates,” by M. T. Pope, Springer-Verlag, New York, 1983, Chap. 7, Fig. 7.8, p. 126.
Key Concept and Components in Composite Membrane Fabrication

3-D Cross-linked Composite Matrix

1. Silane
 \[\text{Si(OR)}_4 \xrightarrow{\Delta} \text{Si(OH)}_4 \xrightarrow{\text{H}_2\text{O}} \text{SiO}_2 \text{ nano-particles} \]
 \[\text{General Rxn: } \text{M(OR)}_n \xrightarrow{\text{M(OH)}}_{\text{n}}, \text{W, etc.} \]

2. Functional Silane
 \[= \frac{\text{Si(OH)}_3}{\text{Si(OH)}_3} \]

3. Molecular Cross-linker
 \[\text{PMG: an ethylene-methylacrylate copolymer w/glycidyl functional groups} \]

4. Polymer
 \[\text{P} \]

5. Heteropoly Acid (HPA)
 (a). Keggin [SiW\(_{12}O_{40}\)]\(^4-\)
 \[\text{H}_3\text{SiW}_{12}\text{O}_{40} \xrightarrow{26\text{H}_2\text{O}} \text{W}_{12}\text{O}_{40}^{2-} \text{(W12-STA)} \]
 (b). Organic derivative with Silane
 \[[\text{Si}(\text{SiW}_{11}\text{O}_{39})]^+ \text{ (ref. 1-4)} \]

Hydrolysis: \(\bigcirc\)
Condensation: \(\Delta\)
Cross-linking: \(\bigcirc\)
Procedure for Fabricating 3D Cross-Linked HPA/SiO₂/Functional Silane Sol Gel Composite & PEM Membrane with PMG

TEOS + Functional Silane + pH = 1.35 H₂O + HPA

aged (gelled) solution

diluted with THF or EtOH

Sol Gel Composite

Sol Solution

Liquid Mixture

Bonded STA%, IEC, & Other Analyses/Tests

solution cast

As-cast Film

thermal or UV X-linking

Cured PEM

Silanes: Methacrylate-type: Z-6030
 Epoxy-type: A-186, A-187

HPAs: H₄SiW₁₂O₄₀ (W₁₂-STA)
 H₈SiW₁₁O₃₉ (W₁₁-STA)
 K₈SiW₁₀O₃₆ (KW₁₀-STA)

Host Polymer Dissolved in THF or EtOH

Curing Agent, X-linker

Polymer: PMG or BSPPO

(3D Network of SiO₂/silane/HPA/PMG)
Formation of SiO$_2$ Nano-Particles in Composite Matrix upon Thermal Treatments (TEM Analysis)

As grown with 10x diluted PEM-#9D solution

Annealed at 80°C for 20 min
Annealed at 140°C for 5 min
Annealed at 190°C for 2 min
Flexibility of PEM Membranes Fabricated with High HPA Loading

PEM-#9B,C,D Films: W12-STA/(PMG + Cross-Linker) = 174 Wt%
Immobilizing the HPA
Binding HPA with Z-6030 Silane in Sol Gel Composite ➔ W12-STA Retained

W12-STA/SiO\textsubscript{2}/Z-6030
(W12-STA washed off easily without Z-6030)
Chemical Stability Test of PEM Films in Fenton Reagent

Fenton’s Reagent:
4 ppm Fe$^{2+}$ + 3% H$_2$O$_2$

at 68°C

Control (no W12-STA)

PEM-#5: W12-STA at 165 wt%, cured at 145°C/2-ton/5-min

PEM-#6: W12-STA at 153 wt%, cured at 145°C/1-ton/5-min

Weight loss due to W12-STA extraction
PEM Mechanical Strength and Flexibility Reduced by Increasing HPA Loading

FTIR-ATR Spectra of Cured Control Blanks and PEM-#7

- **Low STA wt%**
- **Film Flexibility Reduced**
- **Control (no W12-STA & SiO₂)**
- **Control (no W12-STA)**
- **PEM-#7 (W12-STA at 174 wt%)**

(H₂O)
H⁺ Conductivity as a Function of Cell Temperature at 100% RH

Proton Conductivity of PEM-#9D, Film #1, Strip#3

Scan Rate (mV/s):
- 10
- 50
- 100

Temperature Conditions:
- 27°C/100%RH
- 40°C/100%RH
- 60°C/100%RH
- 70°C/100%RH
- 80°C/100%RH

Scan Range:
- -0.50V - +0.50V

Forward Scan (-0.50V - 0.0V)
Return Scan (0.0V - -0.50V)
Table 1. PEM Compositions vs Proton Conductivity Derived from I-V Curves of CV Scans

<table>
<thead>
<tr>
<th>PEM ID</th>
<th>HPA</th>
<th>Components</th>
<th>Weight Ratio</th>
<th>Best Proton Conductivity (mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Host Polymer</td>
<td>X-Linker</td>
<td>HPA/(PMG + X-Linker)</td>
</tr>
<tr>
<td>1</td>
<td>HSiW12Ox</td>
<td>BSPPO</td>
<td>No</td>
<td>0.56</td>
</tr>
<tr>
<td>2</td>
<td>HSiW12Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>0.81</td>
</tr>
<tr>
<td>3</td>
<td>HSiW11Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>1.09</td>
</tr>
<tr>
<td>4</td>
<td>KSiW10Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>1.05</td>
</tr>
<tr>
<td>5</td>
<td>HSiW12Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td>HSiW12Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>1.54</td>
</tr>
<tr>
<td>7</td>
<td>HSiW12Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>1.74</td>
</tr>
<tr>
<td>8</td>
<td>HSiW12Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>1.74</td>
</tr>
<tr>
<td>9B</td>
<td>HSiW12Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>1.74</td>
</tr>
<tr>
<td>9C</td>
<td>HSiW12Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>1.74</td>
</tr>
<tr>
<td>9D</td>
<td>HSiW12Ox</td>
<td>PMG</td>
<td>Yes</td>
<td>1.74</td>
</tr>
<tr>
<td>Nafion 112</td>
<td>SO3H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Values of the proton conductivity at 120°C/23%RH are with large uncertainty because of rapidly lost linearity on I-V curves.
High H⁺ Diffusion Coefficients for Composite Membrane

Proton Diffusion Data from PFG-NMR Measurements

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>H⁺ Diffusion Coefficient (cm²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.0 × 10⁻⁶</td>
</tr>
<tr>
<td>40</td>
<td>5.0 × 10⁻⁶</td>
</tr>
<tr>
<td>60</td>
<td>1.0 × 10⁻⁵</td>
</tr>
<tr>
<td>80</td>
<td>1.5 × 10⁻⁵</td>
</tr>
<tr>
<td>100</td>
<td>2.0 × 10⁻⁵</td>
</tr>
<tr>
<td>120</td>
<td>2.5 × 10⁻⁵</td>
</tr>
<tr>
<td>140</td>
<td>3.0 × 10⁻⁵</td>
</tr>
</tbody>
</table>

PEM-#5 (W12-STA at 150 wt%)
Nafion
(8.8 mS/cm at 80°C/100%RH)
DSC Thermograms of W12-STA, SiO₂, and Two Sol Gel Composites

Moisture Retaining Capability of W12-STA and Sol Gel Composites (DSC Analysis)

W12-STA/SiO₂/Z-6030
W12-STA/SiO₂/A-186

Moisture Retaining Capability of W12-STA and Sol Gel Composites

TGA and DSC Thermograms for PEM-20050823 Membrane

TGA and DSC of as-cast, 80°C-pressed, and 145°C-cured PEM

PEM-#6: W12-STA loading level at 153 wt%/ (PMG+ X-linker)
Summary of Accomplishments
PEM Fabrication and Performance

• We have shown the ability to retain HPAs into a polymer-composite matrix of our design.

• Properties of HPA-based composite PEMs:
 – high chemical stability (Fenton’s reagent test)
 – good thermal stability (with highly reactive W12-STA)
 – good mechanical flexibility
 – effective binding of silicotungstic acids (Wn-STA) with select functional silanes (n = 10, 11, 12)
 – high Wn-STA loading [HPA/(PMG + X-Linker) > 150 wt%]
 – moderate proton conductivity (25 mS/cm at 80°C/100%RH)

• Clear progress towards meeting the DOE targets
Achieving Fundamental Goals

Future Work

• To continue to improve/modify/optimize the current PEM composite formulation, fabrication, and processing conditions
 – to enhance PEM’s thermal stability in the 90-120°C range
 – to improve mechanical strength and flexibility
 – to reduce membrane thickness and improve film uniformity

• To continue to develop immobilization strategies for various HPAs, custom-synthesized at CSM, that show high proton diffusion coefficients and thermal stability.

• To understand the binding mechanism of HPA with functional silanes and SiO₂ nano-particles in the polymer matrix.

• To understand the proton conduction mechanism in the 3D cross-linked composite membranes in order to further improve proton conductivity at low humidity and elevated temperatures.
“One of the few new, alternative ideas for membranes in the whole DOE program”

• Issues:
 – …needs to present conductivity values for membranes with “fixed” HPAs…
 • Done
 - HPA approach is sound as a demonstration but water solubility must be addressed…
 • Excellent progress has been made in this regard
 – Nafion doped in HPAs has been shown to be feasible…the PI is in need of new insight.
 • Not part of our project, those figures were for introduction to HPAs only
 • Our project is focused on developing a composite hydrocarbon membrane using HPAs as the proton conducting moiety that will meet the DOE targets for operation at low RH and higher temperatures

• Future:
 – Need durability studies in actual operating fuel cell conditions and …thermal and RH cycling…gas crossover measurements
 • PEMs of 3D cross-linked PMG matrix were not available yet at the time
 • These subjects will be investigated for HPA-based PEMs this summer
Presentations and Publications

5. F. J. Pern, J. A. Turner, and A. M. Herring; “Hybrid Proton Exchange Membranes Based on Heteropoly-Acid and Sulfonic-Acid Proton Conductors,” ECS 2006, Abstract (accepted for oral presentation)

