DISTRIBUTION OF LOCAL OPEN-CIRCUIT VOLTAGE ON AMORPHOUS AND NANOCRYSTALLINE MIXED-PHASE Si:H AND SiGe:H SOLAR CELLS

C.-S. Jiang, H. R. Moutinho, M. M. Al-Jassim, L. L Kazmerski National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO, USA B. Yan, J. Yang, and S. Guha

United Solar Ovonic Corporation, 1100 West Maple Road, Troy, MI, USA

BACKGROUND

- The best a-Si:H solar cells are deposited under the condition close to the amorphous/nanocrystalline transition but still in the amorphous regime.
- The best nanocrystalline silicon (nc-Si:H) solar cells are deposited under the condition close to the transition but in the nanocrystalline regime
- The devices made on the transition condition show characteristics of a-Si:H/nc-Si:H mixed-phase, having an V_{oc} between 1.0 and 0.5 V.
- The mixed-phase solar cells show light-soaking-induced V_{oc} increase, which is
 opposite to the light-soaking-induced V_{oc} decrease in conventional a-Si:H cells.
- An original explanation for the light-induced V_{oc} increase was light-induced structural changes from the crystalline to amorphous phase.
- A complementary model is two parallel-connected diodes, one with a-Si:H diode characteristics and the other with nc-Si:H diode characteristics.
- We have recently found an aggregation of nc-Si:H phase in the a-Si:H phase matrix,

•KP measures the workfunction difference (WD) when it is in the thermoequilibrium

by imaging the local current flow using conductive AFM.

In this presentation, we report on local V_{oc} distribution on the mixedphase solar cells, by using Scanning Kelvin Probe Microscopy (SKPM).

EXPERIMENTAL

Scanning Kelvin Probe Microscopy (SKPM)

state in the dark.

•KP measures the sum of WD and local V_{oc} when it is illuminated.

Potential measurement on Si:H cells

$\partial_Z \partial_Z \partial_Z$

•SKPM is based on the non-contact mode of atomic force microscopy (NC-AFM) •SKPM measures contact potential difference (CPD) between the tip and sample surface

•SKPM detects the Coulomb force between the tip and sample using second resonant frequency of the cantilever

•Spatial resolution of SKPM: ~30 nm; Energy resolution: ~10 meV

Sample Preparation

i-layer was deposited in a-Si:H/nc-Si:H transition condition.
Characteristics of *i*-layer are sensitive to location on the substrate, center: a-Si:H, corner: nc-Si:H; edge: mixed-phase.

SUMMARY

(a) and (b): SKPM potential and AFM topographic images on a-Si:H region.
(c) and (d): on nc-Si:H region.

(e) and (f): on mixed-phase region.

Distance (µm)

- (g) and (h): on p-layer directly deposited on stainless steel substrate.
- (i): Example potential line profiles in the SKPM images.
- (j): Line profile of Voc deduced from the potential profiles.

•Nanocrystallites aggregate in the amorphous matrix with an aggregation size of ~0.5 $\mu m.$

•The V_{oc} distribution shows valleys in the nanocrystalline aggregation area. •The transition from low to high V_{oc} regions is a gradual change within a distance of around 1 μ m.

•The minimum V_{oc} value in the nanocrystalline clusters in the mixed-phase region is larger than the V_{oc} of a nc-Si:H single phase solar cell.

Potential measurement on SiGe:H alloy cells

By combining SKPM and AFM, we have developed a method to measure the local V_{oc} distribution in mixed-phase solar cells. The results clearly show the nanocrystalline aggregation. The V_{oc} is smaller in the nanocrystalline aggregates than in the surrounding amorphous matrix, and the transition from the low to high V_{oc} is a gradual change. Although there are some lateral charge redistributions, a clear distinction between the amorphous and nanocrystalline regions has been observed. The current SKPM results and previous C-AFM results provide extra support for the two-diode model for explaining the carrier transport in the mixed-phase solar cells

(a): SKPM potential image; (b) AFM; (c): V_{oc} Line profile.

•nc-SiGe:H aggregation is smaller than the case of Si:H •V_{oc} on the aggregation is more smooth-out than the case of Si:H

The information contained in this poster is subject to a government license. 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii; May 7-12, 2006; NREL/PO-520-39865.