Monolithic, Ultra-Thin GaInP/GaAs/GaInAs Tandem Solar Cells

Mark Wanlass, Phil Ahrenkiel, David Albin, Jeff Carapella, Anna Duda, Keith Emery, Daniel Friedman, John Geisz, Kim Jones, Alan Kibbler, James Kiehl, Sarah Kurtz, William McMahon, Tom Moriarty, Jerry Olson, Aaron Ptak, Manuel Romero, and Scott Ward

National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO, USA

Email: mark_wanlass@nrel.gov; Phone: (303) 384-6532; Fax: (303) 384-6430

NREL/PR-520-39852
Presented at the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4) held May 7-12, 2006 in Waikoloa, Hawaii.
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.
Monolithic, Ultra-Thin GaInP/GaAs/GaInAs Tandem Solar Cells

- NREL IR # 05-05, patent pending.
- Near-optimum subcell bandgaps.
- ~300 mV voltage output boost compared to conventional Ge-based triple-junction tandems.
- Bottom subcell E_g is variable.
- Basic approach is expandable to 4-6 subcells.

GaInP: Top subcell absorber, transparent GL, MCC for GaInAs.

~1-eV GaInAs

Top

Middle

Bottom

~1-eV GaInAsN

NREL is operated by Midwest Research Institute • Battelle
Inverted GaInP/GaAs/GaInAs Tandem Structure

- GaAs substrate
- n+-GaInP etch stop
- n+-GaAs contact
- p+/n+-GaAs tunnel junction
- n/p GaAs/GaInP DH
- p*/n*-GaAs tunnel junction
- Compositionally step-graded n-GaInP
- p*-GaInAs contact
- 1.4-eV Middle Subcell
- 1.9-eV Top Subcell
- Transparent Graded Layer
- n/p GaAs/GaInP DH
- p*/n*-GaAs tunnel junction
- n/p GaInP/AlInP DH
- n*-GaAs contact
- n*-GaInP etch stop
- GaAs substrate
- Solar radiation

Back surface: Handle mount, back contact, BSR.
Ultra-thin Tandem Cell Processing Sequence

1) Inverted tandem structure is grown on the parent substrate, and the back contact/BSR is formed.

2) Epistucture is mounted upside down on a handle material (secondary support substrate).

3) Parent substrate is removed.

4) Front-surface processing is completed.
Advantages of Ultra-Thin, Handle-Mounted Tandem Solar Cells

• Handle material can be engineered to have a wide range of advantageous characteristics.
• Thermal management can be optimized.
• Highest specific power (W/kg) for space applications.
• Reuse and/or reclamation of the parent substrate also possible, reducing cost.
• Parent substrate can be impure to reduce cost.
• Benefits of BSR: thin GaInAs subcell, lower J₀, improved radiation hardness, reduced operating temperature.
Semi-Realistic Performance Modeling GaInP/GaAs/GaInAs

Low-AOD Direct Spectrum, 250 suns, 25°C
QE = 0.95, realistic $J_0(E_g)$, no parasitic losses

Subcell parameters

<table>
<thead>
<tr>
<th>Subcell Absorber</th>
<th>E_g (eV)</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (A/cm²)</th>
<th>FF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInP</td>
<td>1.87</td>
<td>1.53</td>
<td>3.40</td>
<td>91.57</td>
</tr>
<tr>
<td>GaAs</td>
<td>1.42</td>
<td>1.12</td>
<td>3.40</td>
<td>89.23</td>
</tr>
<tr>
<td>GaInAs</td>
<td>1.01</td>
<td>0.74</td>
<td>3.63</td>
<td>85.21</td>
</tr>
</tbody>
</table>

Series-connected tandem parameters

<table>
<thead>
<tr>
<th>V_{oc} (V)</th>
<th>J_{sc} (A/cm²)</th>
<th>FF (%)</th>
<th>V_{max} (V)</th>
<th>J_{max} (A/cm²)</th>
<th>P_{max} (W/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.38</td>
<td>3.40</td>
<td>90.32</td>
<td>3.11</td>
<td>3.34</td>
<td>10.38</td>
</tr>
</tbody>
</table>

Tandem efficiency: 41.5%
Semi-Realistic Performance Modeling

Conditions
- AM0, one sun, 25°C
- QE = 0.95, Realistic $J_0(E_g)$

Tandem efficiency
- ~33% (one sun)
- ~36% (10 suns)

Subcell parameters

<table>
<thead>
<tr>
<th>Subcell Absorber</th>
<th>E_g (eV)</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>FF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaInP</td>
<td>1.87</td>
<td>1.393</td>
<td>17.00</td>
<td>90.94</td>
</tr>
<tr>
<td>GaAs</td>
<td>1.42</td>
<td>0.981</td>
<td>17.00</td>
<td>88.09</td>
</tr>
<tr>
<td>GaInAs</td>
<td>1.02</td>
<td>0.608</td>
<td>18.13</td>
<td>83.01</td>
</tr>
</tbody>
</table>

Series-connected tandem parameters

<table>
<thead>
<tr>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>FF (%)</th>
<th>V_{max} (V)</th>
<th>J_{max} (mA/cm²)</th>
<th>P_{max} (mW/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.98</td>
<td>17.00</td>
<td>89.27</td>
<td>2.72</td>
<td>16.65</td>
<td>45.26</td>
</tr>
</tbody>
</table>
Defects in LMM, ~1-eV GaInAs

XTEM

Plan-view CL

Grid line

TD density ~ 2E6 cm$^{-2}$
~1-eV, LMM (2.2%) GaInAs/GaInP DH Cell Performance

Internal Quantum Efficiency

Current (Voltage)

Single-junction GaInAs
Low AOD @ one sun
Voc = 0.56V
Jsc = 18.6 mA/cm²
FF = 75%
Ultra-Thin, Handle-Mounted GaInP/GaAs/GaInAsTandem AEQE & R Data

- QE is excellent for all subcells, but some improvement is still possible (reduce parasitic absorption and reflection).
- ZnS/MgF$_2$ ARC is not optimal.
- Interference evident in thin bottom subcell.
Reported Performance

<table>
<thead>
<tr>
<th>Facility</th>
<th>Date</th>
<th>Conditions</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVSC</td>
<td>1/3-7/05</td>
<td>Global, 25°C</td>
<td>31.1%</td>
</tr>
<tr>
<td>SPW</td>
<td>4/18-21/05</td>
<td>AM0, 1 sun, 25°C</td>
<td>29.7%</td>
</tr>
<tr>
<td>ISCC</td>
<td>5/1-5/05</td>
<td>Direct, 10.1 suns, 25°C</td>
<td>37.9%</td>
</tr>
<tr>
<td>SPRAT</td>
<td>9/20-22/05</td>
<td>AM0, 1 sun, 25°C Kapton handle</td>
<td>26.5%</td>
</tr>
<tr>
<td>SPRAT</td>
<td>9/20-22/05</td>
<td>AM0, 8.9 suns, 25°C</td>
<td>31.4%</td>
</tr>
</tbody>
</table>
V_{oc}, FF (Concentration Ratio)

- $<n> = 1.36$
- $<n> = 0.92$

Concentration with water filtered 1 kW Xe lamp and fast V for temperature

MF602 #2, GaInP/GaAs/GaInAs
Cell temperature = 25 °C
High-performance, low-AOD AM1.5 direct
Area = 0.2428 cm2
I-V Data at Peak Efficiency

- $\eta = 37.9\%$ (10.1 suns).

- On 4/25/05, a new record for solar PV conversion.

- With continued development, $\eta > 40\%$ possible at higher concentration ratios.
Recent progress

V_{oc} and FF vs I_{sc}

Sample ID: NRE MG468#7

April 11, 2006

~200 suns
Research Issues

• High-yield processing of handle-mounted, ultra-thin devices.

• Develop process enabling reuse of parent substrate.

• Tandem cell efficiency testing more difficult w/ 1-eV subcell - even more difficult as we consider more than three subcells.

• Inverted tunnel junctions.

• Radiation effects.

• Push efficiency limits by including more subcells - can we achieve 40-50% (terr. conc.), 35-40% (AM0)?
Advanced Design Options

- Concept applies to two, or more, subcells.
- A wide range of substrates, subcell materials, tunnel junction materials, and transparent compositional grades are possible.
- Substrates: GaAs, Ge, Si, SiGe.
- Subcells, etc.: AlGaInPAsSb.

Legend:
LM = lattice matched.
LMM = lattice mismatched.
DH = double heterostructure.