Lattice-mismatched GaAsP Solar Cells Grown on Silicon by OMVPE

National Renewable Energy Laboratory

at the

4th World Conference on Photovoltaic Energy Conversion, 2006, Hawaii

NREL/PR-520-39847

Presented at the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4) held May 7-12, 2006 in Waikoloa, Hawaii.
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the “Government”) retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.
Motivation

- Monolithic, two (or more) junction single crystal solar cell on Si
- Old idea (SERI 1980’s)

Advantages of silicon substrates:

- Excellent solar cell material
- Lower cost than III-V or Ge
- Mature Si technology
- Mechanically robust
- Two-junction cell using Si bottom junction is nearly optimal theoretical efficiency
 - 34% efficiency at 1 sun AM0
 - 44% efficiency at 500 sun AM1.5G
Challenges for III-V on Si growth

- Silicon oxides
- Surface contamination
- Antiphase domains
- Etching by sources
- Interdiffusion
- Lattice-mismatch
- Thermal expansion mismatch

New developments
- Improved characterization techniques
- Better understand for III-V nucleation
- Lattice-matched GaNPAs materials
P-on-N GaAsP Cell Structure

- III-V grown by OMVPE
- Smooth GaP nucleation on Si
- Step graded GaAsP buffer to reduce dislocations
- Constant lattice GaAsP junction with GaInP passivation

![Diagram of GaAsP cell structure with bandgap vs. lattice constant graph.](image-url)
GaP Nucleation on Si

- Antiphase domains during GaP nucleation revealed by AFM
- Growth of LM GaNP smoothes surface and reduces APD

5.7 nm GaP
RMS = 1.2 nm

17 nm GaP
33 nm GaNP
RMS = 1.9 nm

18 nm GaP
403 nm GaNP
RMS = 0.4 nm
Step graded buffer layer

- 0.25 or 0.5 μm \(\text{GaAs}_x \text{P}_{1-x} \) steps
- Composition change \(\Delta x = 0.07 \) per step
- 3.75 or 6.5 μm total buffer thickness
- Many dislocations in grade, but few in active layers

Cross-sectional TEM
Composition and Strain

- Grown under compression because growing epilayers have larger lattice constant
- Relaxes at T_g above critical thickness
- Cools toward tension
- Residual compressive strain at T_g results in less tension at RT (no cracks)

X-ray diffraction
224GI reflection RSM
Threading Dislocations

- Electron-Beam-Induced Current (EBIC)
- $9 \times 10^7 - 1 \times 10^8 \text{ cm}^{-2}$ threading dislocations

Plan-view EBIC
GaAsP/Si Device Performance

- Single-junction 8.7% efficiency AM1.5G w/o AR coat
- Increase J_{sc} with lower E_g (need about 20 mA/cm2 for 2-junction current matching)
- Improve QE with better passivation, thinner window
Literature Comparison

GaAsP/GaAs $\sim 10^6$ cm$^{-2}$
Vernon, 19th PVSC, (1987), 108
Wanlass, 19th PVSC, (1987), 530

GaAs/SiGe/Si $\sim 10^6$ cm$^{-2}$
Ringel, Prog. PV 10, (2002), 417

GaAsP/Si (TCA)

AlGaAs/Si $\sim 10^7$ cm$^{-2}$

V_{oc} is excellent measure of quality for mismatched solar cells

LM GaNP(As)/Si or GaP
Geisz, 31st PVSC, (2005), 695

GaNP(As)/Si or GaP

GaInP/GaAs

$V_{oc} = E_g/q - 0.4$

This work

GaAsP/Si (TCA)
Hayashi, 1st WCPEC, (1994), 1890

V_{oc} is excellent measure of quality for mismatched solar cells.
Conclusions

- Lattice-mismatched GaAsP solar cells grown on Si
- Compositional step grade reduced dislocations to \(\sim 10^8 \text{ cm}^{-2} \)
- \(V_{oc} \) not ideal, but comparable to best III-V grown on Si with transparent buffer
- Diffusion lengths better than LM GaNP
- Want to reduce dislocations to \(10^6 \text{ cm}^{-2} \)
Thermal Expansion

- Can measure strain at RT with XRD
- Would like to measure strain during growth
- Can calculate strain state at T_g assuming
 - change in in-plane lattice constant of epilayers constrained by thick Si
 - no relaxation upon cool-down
- Linear coefficients of thermal expansion (K^{-1})
 - Si: 3.7 \times 10^{-6}
 - GaP: 5.3 \times 10^{-6}
 - GaAs: 6.8 \times 10^{-6}
 - GaN: 6 \times 10^{-6} ?
 - InAs: 5.2 \times 10^{-6}
- Scales with T_g
- Biaxial strain energy
 \[U = Y \varepsilon_x^2 t \]
Cracking from Tensile Strain on Si

Cross-sectional TEM

Optical Nomarski

Plan-view SEM

220DF

GaAs$_{0.63}$P$_{0.37}$

GaAs$_{0.7}$P$_{0.3}$

GaAsP step grade

GaN-P

Si

Charging effect reveals cracks
Si junction

- Under current growth conditions, more P than Ga diffusion into Si from GaP
- Creates n-type emitter in silicon
- Emitter passivation from GaP if no interface defects

- V_{oc} of silicon junction ~ 535 mV
- Currently using CZ Si, but float-zone may be better
- BSF from annealed Al contact
GaNPAs/Si Tandem Solar Cell Results

- Working tandem
- Good current in Si junction, but Voc could be a little better
- GaNPAs delivers half the current necessary to current match tandem

Geisz et al., PVSC 31 (2005) 695
Step Grading for Mismatch on GaP

- Top layer strained to match next in-plane lattice constant (residual strain)
- Mostly relaxes while next layer growing

XRD Reciprocal Space Maps
Lattice-matched GaNP
GaNPAs/Si Tandem Solar Cell Structure

<table>
<thead>
<tr>
<th>Layer Description</th>
<th>Thickness</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 μm n-type GaAs:Se</td>
<td>70 nm</td>
<td>Au grid</td>
</tr>
<tr>
<td>0.1 μm n-type GaN${0.02}$P${0.98}$:Se</td>
<td>0.1 μm</td>
<td>n-type GaNP${0.02}$As${0.98}$:Se</td>
</tr>
<tr>
<td>1.0 μm intrinsic undoped GaNPAs</td>
<td>1.0 μm</td>
<td>p-type GaNP${0.02}$As${0.98}$:Zn</td>
</tr>
<tr>
<td>0.2 μm p-type GaN${0.02}$P${0.98}$:Zn</td>
<td>0.2 μm</td>
<td>n-type GaNP${0.02}$As${0.98}$:Se</td>
</tr>
<tr>
<td>0.5 μm GaN${0.02}$P${0.98}$:Se buffer layer</td>
<td>0.5 μm</td>
<td>GaNP${0.02}$As${0.98}$:Se</td>
</tr>
<tr>
<td>40 nm GaP nucleation layer</td>
<td>40 nm</td>
<td>GaNP${0.02}$As${0.98}$:Se</td>
</tr>
<tr>
<td>diffused n-type Si emitter</td>
<td></td>
<td>Si emitter</td>
</tr>
<tr>
<td>p-type Si:B substrate</td>
<td></td>
<td>Si:B substrate</td>
</tr>
<tr>
<td>diffused Si:Al back-surface-field</td>
<td></td>
<td>Si:Al back-surface-field</td>
</tr>
<tr>
<td>Al metal contact</td>
<td></td>
<td>Si substrate</td>
</tr>
</tbody>
</table>

Diagram:
- **Top Cell:**
 - n-i-p top cell
 - tunnel junction
 - silicon bottom cell
- **Bottom Cell:**
 - p-type Si:B substrate
 - diffused Si:Al back-surface-field

Materials:
- Au
- GaNP$_{0.02}$As$_{0.98}$:Se
- GaNP$_{0.02}$As$_{0.98}$:Zn
- GaNP$_{0.02}$As$_{0.98}$:Se
- GaNP$_{0.02}$As$_{0.98}$:Se buffer layer
- GaP
- Si substrate

Notations:
- 220DF
- 5 μm
GaAsP/Si Device Performance

- Single-junction 8.7% efficiency AM1.5G w/o AR coat
- Increase J_{sc} by lower E_g (need about 20 mA/cm2 for 2-junction)
- Improved QE with wide depletion region, but decent with thinner depletion region
- GaAsP/Si better than GaNPAs/GaP
 - Longer diffusion length even with 10^8 cm$^{-2}$ TD