Wind Energy Status and R&D Challenges

Brian Parsons
Senior Project Manager
28 February 2006

DOE’s National Wind Technology Center
Golden, Colorado
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the “Government”) retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.
The U.S. Energy Picture
by source - 1850-1999

United States - Wind Resource Map

Wind Power Classification

<table>
<thead>
<tr>
<th>Wind Power Class</th>
<th>Resource Potential</th>
<th>Wind Power Density at 50 m W/m²</th>
<th>Wind Speed at 50 m m/s</th>
<th>Wind Speed at 50 m mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Marginal</td>
<td>200 - 300</td>
<td>5.6 - 6.4</td>
<td>12.5 - 14.3</td>
<td></td>
</tr>
<tr>
<td>3 Fair</td>
<td>300 - 400</td>
<td>6.4 - 7.0</td>
<td>14.3 - 15.7</td>
<td></td>
</tr>
<tr>
<td>4 Good</td>
<td>400 - 500</td>
<td>7.0 - 7.5</td>
<td>15.7 - 16.8</td>
<td></td>
</tr>
<tr>
<td>5 Excellent</td>
<td>500 - 600</td>
<td>7.5 - 8.0</td>
<td>16.8 - 17.9</td>
<td></td>
</tr>
<tr>
<td>6 Outstanding</td>
<td>600 - 900</td>
<td>8.0 - 8.8</td>
<td>17.9 - 19.7</td>
<td></td>
</tr>
<tr>
<td>7 Superb</td>
<td>800 - 1600</td>
<td>8.8 - 11.1</td>
<td>19.7 - 24.8</td>
<td></td>
</tr>
</tbody>
</table>

* Wind speeds are based on a Weibull k value of 2.0

Indian Reservations and Alaska Native Village Areas

U.S. Department of Energy National Renewable Energy Laboratory

DM Heimiller 31-MAY-2001 1.2.8
Cost of Energy Trend

1981: 40 cents/kWh

- Increased Turbine Size
- R&D Advances
- Manufacturing Improvements

NSP 107 MW Lake Benton wind farm
4 cents/kWh (unsubsidized)

2006: 3 - 6 cents/kWh with PTC
Clipper LWST Prototype
2.5 MW with 93 m Rotor
Wind Energy Research Activities

Turbine Development Programs
- Low Wind Speed Technology
- Distributed Wind Technology

Supporting Research Activities
- Advanced Rotor Development
- Generator, Drivetrain, and Power Electronics
- Systems and Control
- Technology Acceptance
- Utility Grid Integration
- Certification Testing
Measuring and Modeling Dynamic Stall and Unsteady Aerodynamics

NASA Ames 80’ by 120’ Wind Tunnel Test

ADAMS Model

Smoke Test
Measuring and Modeling the Low-Level Nocturnal Jet

Radial Velocity (m/s)

Date: 10/21/1999, Time: 1:12 to 1:48, Az = 225.00

km

Met tower and SODAR at Lamar, Colorado

Courtesy R. Banta NOAA
Blade Scaling for Multimegawatt Rotors

![Graph showing blade weight in kg versus rotor diameter (m).]

- 4 Preliminary Designs From This Work
- Earlier Designs From WindStats
- Latest Designs From WindStats
- Power (Earlier Designs From WindStats)
- Power (Latest Designs From WindStats)

[Source: National Renewable Energy Laboratory]
Industry’s Growing Needs

A new 45-meter wind turbine blade was shipped to the NWTC for testing in July 2004.
Advanced Drivetrain R&D

Today
1.5 MW Commercial Technology

Tomorrow
Prototype Technology
What are the Future R&D Needs?
Offshore Wind – U.S. Rationale

Why Go Offshore?

Windy onshore sites are not close to coastal load centers

The electric utility grid cannot be easily set up for interstate electric transmission

Load centers are close to the offshore wind sites

US Population Concentration

US Wind Resource

Graphic Credit: Bruce Bailey AWS Truewind

Graphic Credit: GE Energy
<table>
<thead>
<tr>
<th>Region</th>
<th>GW by Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 - 30</td>
</tr>
<tr>
<td>New England</td>
<td>10.3</td>
</tr>
<tr>
<td>Mid-Atlantic</td>
<td>64.3</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>15.5</td>
</tr>
<tr>
<td>California</td>
<td>0.0</td>
</tr>
<tr>
<td>Pacific Northwest</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>90.1</td>
</tr>
</tbody>
</table>

Resource Not Yet Assessed
Offshore Wind Turbine Development for Deep Water

Current Technology

Onshore Wind Turbine

Monopile Foundation
depth 0 – 30 m

Tripod fixed bottom
depth 20 – 80 m

Floating Structure
depth 40 – 900 m
• Turbulent winds
• Irregular waves
• Gravity / inertia
• Aerodynamics:
 – induction
 – skewed wake
 – dynamic stall
• Hydrodynamics:
 – scattering
 – radiation
 – hydrostatics
• Elasticity
• Mooring dynamics
• Control system
• Fully coupled
A Future Vision for Wind Energy Markets

Today 2005

- Bulk Power Generator 4-6¢ at 15mph
 - Land Based
 - Bulk Electricity
 - Wind Farms

Potential 20% of Electricity Market

Tomorrow

- **LWST Turbines:**
 - 3¢/kWh at 13 mph
 - Electricity Market 2012

- **Offshore LWST Turbine:**
 - 5 cents/kWh
 - Shallow/Deep water
 - Electricity Market
 - Higher wind Sites 2014 and Beyond

- **Custom Turbines:**
 - Electricity
 - H2 production
 - Desalinate water
 - Storage
 - Multi-Market 2030 and Beyond

Land Based Electricity Path

- Land Based LWST Large-Scale 2–5 MW

Transmission Barriers

- **Cost & Regulatory Barriers**

Offshore Electricity Path

- Offshore Turbines 5 MW and Larger

Advanced Applications Path

- Land or Sea Based:
 - Hydrogen
 - Clean Water

Cost & Infrastructure Barriers

- **Offshore LWST Turbine:**
 - 5 cents/kWh
 - Shallow/Deep water
 - Electricity Market
 - Higher wind Sites 2014 and Beyond

- **Custom Turbines:**
 - Electricity
 - H2 production
 - Desalinate water
 - Storage
 - Multi-Market 2030 and Beyond

Land Based Electricity Path Transmission

- **Barriers**

Offshore Electricity Path

- **Barriers**

Advanced Applications Path

- **Barriers**

Land Based LWST Large-Scale 2–5 MW

- **Barriers**

Offshore Turbines 5 MW and Larger

- **Barriers**

Land or Sea Based:

- **Barriers**

Tomorrow

- **LWST Turbines:**
 - 3¢/kWh at 13 mph
 - Electricity Market 2012

- **Offshore LWST Turbine:**
 - 5 cents/kWh
 - Shallow/Deep water
 - Electricity Market
 - Higher wind Sites 2014 and Beyond

- **Custom Turbines:**
 - Electricity
 - H2 production
 - Desalinate water
 - Storage
 - Multi-Market 2030 and Beyond