Plug-in HEVs: A Near-Term Option to Reduce Petroleum Consumption

from FY05 Milestone Report

Tony Markel, Michael O’Keefe, Andrew Simpson, Jeff Gonder, Aaron Brooker
National Renewable Energy Laboratory
Golden, Colorado
January 19, 2006

NREL/PR-540-39415
Presented to DOE management staff on September 14, 2005 at the DOE headquarters in Washington DC. Content updated January 19, 2006 for final publication.
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.
Project Objective

• Assess the opportunity for a future research program that will address plug-in hybrid electric vehicle (PHEV) market & technology issues.

• Approach
 – Collect and assemble information and analysis to enhance our understanding of the benefits and barriers of plug-in hybrid technology
Messages

• Plug-in HEVs have the best near-term potential to reduce petroleum consumption by shifting demand to a variety of domestic sources including renewables

• Systems integration/optimization are essential to provide commercially viable options
 – Battery technology development critical but research pathway depends on application, vehicle configuration, and utility integration approach
The Perfect Storm

- Petroleum consumption has steadily increased while domestic production has continued to decline.
- World oil production will likely peak within the next 5-15 years.
- Recent increase in gasoline price is indicator of growing tension between supply and demand.

Gasoline price - 75% rise in 5 years!

What’s our plan?
Vehicle Technology Options to Reduce Petroleum Consumption

• Hybrid electric vehicles (charge-sustaining)
 – Combines petroleum engine with a small energy storage device used over narrow window of operation

• Plug-in HEVs (charge-depleting)
 – Use larger energy storage device with the ability to recharge from both on-board and off-board sources with a petroleum engine providing continuous fast refuel operation

• Fuel cell hybrid vehicles
 – Replaces the petroleum engine with highly efficient fuel cell consuming hydrogen from non-petroleum sources – could be charge-sustaining or charge-depleting

• Electric vehicles
 – Large energy storage is the only source of propulsion energy
Cumulative Petroleum Savings Potential of Technology Options

- Benefits from HEVs and PHEVs vary depending on application and design
- FCHEV assumes hydrogen fuel; and gains maximum benefit rate

- High Impact Path

- PHEVs provide the best combination of rate and timing to provide significant fuel consumption reduction benefits while hydrogen fuel cell technology is being developed

Market penetration model not included - vehicle to vehicle comparison
1,000,000 PHEVs Could Save ~10 Million Barrels of Oil Annually

It has taken 5 years to reach 200,000 hybrid vehicles in the market.

Annual US Consumption

Daily US Consumption

Number of PHEVs

Percentage of Fleet

(5%)

(45%)
Messages

• Plug-in HEVs have the best near-term potential to reduce petroleum consumption by shifting demand to a variety of domestic sources including renewables

• Systems integration/optimization are essential to provide commercially viable options
 – Battery technology development critical but research pathway depends on application, vehicle configuration, and utility integration approach
Plug-In HEV Design Options

• Typical Plug-in HEV characterized by All Electric Range (AER)
 – AER - miles driven after a full recharge until the gasoline engine first starts to assist
• Alternatively, Plug-in HEV design may focus on maximizing the electric-only miles dispersed throughout a driving pattern
 – maximizes the effective and efficient use of grid-electricity
• Combination of these two scenarios likely to provide optimal reduction in petroleum consumption
 – Use grid-electricity to off-set use of gasoline improve cycle average efficiency of the engine

Source: Duval, M. “Plug-in HEV Workshop” EVS20
Component Sizing and Control Options

Battery power sufficient to provide EV-only operation

60 mpg

PHEV10 Mid-Size Sedan (fixed battery energy)
Only a few EV miles but many more blended miles
Battery is < half the original power and 30% cheaper, but fuel economy drop is < 10%
Component Sizing and Control Options

PHEV10 Mid-Size Sedan (fixed battery energy)

Below 20kW battery, lost regen impacts consumption
Component Sizing and Control Options

Cylinder deactivation in large engine could be used to regain efficiency

PHEV10 Mid-Size Sedan (fixed battery energy)
Performance Variability Challenge

• Larger engine provides better continuous performance
 – Charge-sustaining fuel economy improvement potential directly related to engine downsizing
 – Peak power capability is a function of battery/motor power

• Battery power capability varies with state of charge
 – In charge-sustaining mode, battery/motor must be sized to maintain performance

• If vehicle performs best when fully charged, it is an incentive for the consumer to recharge often

Plug-in HEV10 battery even at low SOC level has equivalent power and twice the available energy of typical hybrid battery
Cost and Life Challenge

• Deep cycling of batteries tends to shorten the number of cycles before end of life
 – Characterization of real-world cycling important

• Cost of advanced batteries high under today’s low volume production situation
 – Selection of battery characteristics and system management provides solutions

Existing data sets provide limited view of future potential
Need more data to support conclusions
Battery Cycle Life Data

- Existing data is limited
- Need to consider combination of high and low frequency cycling as in PHEV

Source: Presented by Christian Rosenkranz (JCI) at EVS 20
• Slope and magnitude of relationship are long-term and debatable
Optimal Depth of Discharge (DOD) is Dependent on Battery Life and Cost, Vehicle Life, Duty Cycle, …

Requires systems approach!

Battery cost and life assumptions highly influential

Battery cost decreases as life increases

Optimum DOD = 73%

Battery life exceeds vehicle life

Energy costs increase as battery weight increases

Assumptions:
- PHEV20 (~6 kWh usable)
- 10 year vehicle life
- Gasoline @ $2.50/gal
- Electricity @ $0.06/kWh
- 40 mile daily trip (~15,000 miles annually)
- Recharge daily
- No discount rate
Designing for Requirements Provides Cost Effective PHEV Solution

Plug-In HEV Annual Cost savings relative to HEV0 vs. Trip distance (73% DOD window) as a percentage of HEV0 Annual Costs

- Maximum cost saving when trip length = AER
- Only includes battery and operating costs, engine and motor costs assumed constant for all vehicles

- Large relative cost penalty when trip length << AER - battery is under-utilized.

Daily Distance Distribution
Cost effective solutions capture large percentage of trips
Development of Vehicle Requirements Based on Real-World Driving Data

• Optimal design for greatest cost/benefit is highly dependent on duty cycle
• National personal transportation surveys provide a potential data source
• St. Louis data used as an example data set
• Similar data sets for other areas required to fully characterize national behavior
St. Louis Travel Data Analysis
Daily Driving Distance Slightly Shorter than 1995 NPTS Data

St. Louis is a fairly dense metro area
Preliminary PHEV In-Use Fuel Consumption

Each vehicle in St. Louis data set was modeled both as a conventional and PHEV.

- 8647 total miles driven
- 100% replacement of sample fleet
- 1452 kWh for recharge

PHEV30 saves ~1 gal/day/vehicle

Morning commute electrified!

- 26.6 mpg
- 106 mpg
- 168 Wh/mi

Assumes $2.50/gal and 6¢/kWh

<table>
<thead>
<tr>
<th></th>
<th>Conv</th>
<th>PHEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>$3.50</td>
<td>$0.90</td>
</tr>
<tr>
<td>Elec</td>
<td>$0</td>
<td>$0.38</td>
</tr>
<tr>
<td>Total</td>
<td>$3.50</td>
<td>$1.28</td>
</tr>
<tr>
<td>¢/mile</td>
<td>9.2</td>
<td>3.4</td>
</tr>
</tbody>
</table>

>50% reduction in operating costs

~$700 annual savings

Assumes $2.50/gal and 6¢/kWh

NREL National Renewable Energy Laboratory
Optimal Configuration & Associated Oil Savings Based on Realistic Market Penetration

- Technical Target Tool (T3) competes PHEVs, HEVs, conventional, and FCHEVs
- Sales predictions based on vehicle attributes

Outputs:
- Most competitively configured PHEV
- Associated oil savings
Opportunity for Collaboration

- Multidisciplinary challenges can be best solved with collaborative effort
Future Work

• Planned FY06 Activities
 – Explore design options to address challenges and define requirements
 – Develop realistic 24hr PHEV drive cycle including charging for life cycle testing
 – Demonstrate technology viability and functionality

• Additional Needs
 – Collaborative multidisciplinary modeling effort to model integration and implementation opportunities (WinDS, HOMER®,…)
 – Support the development of parametric battery cost and life models through data collection
 – Estimate market penetration potential and oil savings for Plug-in HEVs using analysis tools

Focus on:
• Battery Cost and Life
• Systems Integration
• Hybrid Evolution
Messages (Just a Reminder)

• Plug-in HEVs have the best near-term potential to reduce petroleum consumption by shifting demand to a variety of domestic sources including renewables

• Systems integration/optimization are essential to provide commercially viable options
 – Battery technology development critical but research pathway depends on application, vehicle configuration, and utility integration approach