

Innovation for Our Energy Future

The Impact of Lubricant Formulation on the Performance of NO_x Adsorber Catalysts

Shawn D. Whitacre

August 25, 2005

Presented at: Diesel Engine Emission Reduction Conference

Contact info: (303) 275-4267 Shawn_Whitacre@nrel.gov

NREL/PR-540-38641

Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.

Presentation Outline

- Background/Motivation
- Summary of Phase I
- Experimental Design
- Results
- Conclusions

Advanced Petroleum Based Fuels – Diesel Emission Control Study

Government/Industry Sponsorship

DOE sponsors: Steve Goguen and Kevin Stork

Motivation for Research

- Lubricant effects on automotive three-way catalysts are well documented
 - Phosphorus
- Similar impacts anticipated in diesel systems

 May involve other "poisons", including sulfur
- ASTM already working on lubricant specs for trap equipped engines (PC-10)
- Interactions may be subtle, but still significant when useful life requirements are considered

Engine Oil Formulation

APBF-DEC Lubricants Project

Phase I

Phase II

Determine the impact of lubricant properties and composition on engine-out/catalyst-in emissions

- Part 1: Characterize effects of lubricant properties on engine out emissions
- Part 2: Develop methods to accelerate exposures of emission control systems (ECS) to lubricant-derived emissions

Determine if lubricant formulation impacts the performance and durability of diesel engine ECS

Phase I Summary

- Results Presented at DEER 2002
- Oil formulation has significant effects on engine-out emissions
- Not all lubricant additive systems impact emissions similarly
- Lubricant sulfur content not a good predictor of sulfur emissions

Phase II Test Protocol

- 400-hour test
- Evaluations at 100-hour intervals
 - Focus on NO_x reduction efficiency
- Oil consumption measurement
- New LNT for each test
- Oil change at 200-hours
- DEC base fuel (0.6-ppm S/15-ppm S)
- Post-analysis of catalyst by XRF

Test Hardware – Phase 2

- 2002 Cummins ISB 300 hp @ 2500 rpm
- 5.9L, inline 6 cylinder
- Cooled-EGR
- Single NO_x adsorber (7L)
- In-pipe regeneration fueling

Operating Modes

			Average	
			Catalyst	
	Engine		Mid	Space
	Speed	Load	Temp. °F	Velocity
Mode	(RPM)	(FT*Lbs)	(°C)	(1/hr)
1	1650	140	650 (343)	30,000
2	2100	175	650 (343)	70,000
3	1400	160	750 (399)	32,000
4	1900	225	750 (399)	63,000
5	1200	275	850 (454)	33,000
6	1700	350	850 (454)	62,000

Phase 2 Analysis Approach

Test Matrix

Properties of Test Oils

								Viscosity		
							TBN	1000	@40°	
Test	Ash*	S*	Са	Р	Zn	N*	(mg	@100°C	Č	Soot
Number	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	KOH/g)	(cSt)	(cSt)	(%)
1	0.775	1695	1853	427	471	1128	6.99	14.9	111.3	0.07
2	1.522	2928	3258	1210	1320	1329	12.34	15.0	111.9	0.06
3	1.131	3980	2050	1430	1590	1477	7.3	15.0	111.9	0.06
4	1.316	4195	3160	1340	1520	1314	10.6	15.0	112.5	0.12
5	1.310	2228	3241	419	475	1368	9.6	14.6	107.7	0.12
6	1.497	4197	3518	1280	1480	1315	10.2	14.7	109.1	0.11
7	0.775	1695	2065	451	505	1128	6.7	14.9	110.9	0.08
8	0.775	1695	2329	483	546	1128	8.7	14.9	110.9	0.11

Catalyst Deposit Profile

- Samples extracted from three positions and analyzed via Uniquant x-ray fluorescence
- Phosphorus deposits concentrated in front third of catalyst

Phosphorus Impact on Performance

Impact of Detergent

△Low Ca Sulfonate ☐High Ca Sulfonate ●High Ca Phenate ★High Ca Salicylate

Relative Impact of Fuel and Lube S

Preliminary Conclusions – Phase 2

- Sulfur and phosphorus in lube oil appear to impact LNT performance
- Deposits of lube oil derived species concentrated on front of catalyst
- Detergent level/type may impact rate of phosphorus deposition
- Fuel sulfur still appears to be dominant in terms of degradation
- Final reporting still in progress
 - Will be available late 2005

