

Innovation for Our Energy Future

Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel

Diesel Engine Emissions Reduction Conference August 25th, 2005

Matthew Thornton, National Renewable Energy Laboratory Marek Tatur, Heather Tyrer, Dean Tomazic, FEV Engine Technology Phil Weber and Cynthia Webb, SwRI

NREL/PR-540-38639 Presented at 2005 Diesel Engine Emissions Reduction (DEER) Conference, August 21-25, 2005 in Chicago, IL.

NREL is operated by Midwest Research Institute - Battelle

Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the "DOE"). The United States Government (the "Government") retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.

Outline

- Project Overview
- Program goals and objectives
- Hardware overview
- Test procedures
- Test results
- Summary and outlook

APBF-DEC Projects

NO _x Adsorber/DPF			SCR/DPF	Lubes
FEV	SwRI	Ricardo	SwRI	AEI
1.9L TDI	6.6L Isuzu Duramax	15L Cummins ISX	Caterpillar C12	Cummins ISB
Audi A4 Avant	Chevrolet Silverado		No vehicle	

APBF-DEC Organization

Project Objectives for LD NOx Adsorber Projects : Examine fuel property effects on NAC/DPF systems

Approach:

- Demonstrate low emissions potential of diesel engines equipped with advanced fuel, NOx adsorbers, DPFs, EGR, double-wall exhaust
 - Goal: Tier 2 Bin 5 (0.07 g/mi NOx 0.01 g/mi PM)
- Age systems with Ultra Low S fuel for up to 2200 hrs
 - Periodic emissions evaluations during aging (before and after NOx adsorber desulfation)
 - Periodic unregulated emissions measurement with 15-ppm S refinery product
 - NOx adsorber desulfation performed on time based schedule

Project Outline

Project divided into three Tasks:

- Hardware procurement and operational strategy development
- System integration and optimization
- Performance and aging evaluation
 - Age ECS to 2000-2200 hours with 15-ppm S Fuel
 - 2,200 hours equal full useful lifetime of 120,000 miles
 - Emissions evaluation procedures performed every 100-200 hrs
 - Desulfations performed every 150-200 hours to start then 100 hours (and every 50 hours at the end for the Passenger Car platform)

Project Hardware Overview

Passenger Car

Engine Specification

Arrangement: In-Line 4-Cylinder

Displacement: 1.9 L

- Rated Power: 100 kW @ 4000 rpm
- Max. Torque: 330 Nm @ 2000 rpm

Medium-Duty Engine

Engine Specification

Arrangement:	8-Cylinder V		
Displacement:	6.6 L		
Rated Power:	224 kW @ 3100 rpm		
Max. Torque:	705 Nm @ 1800 rpm		

Passenger Car Project In-Line Emission Control System

Medium-Duty Engine Project Dual Leg Emission Control System

Test Procedures Engine Dynamometer Test Cell:

1 set of cycles = 1 PM sample = 10 PM samples

1 set of cycles = 1 PM sample = 7 PM samples

NOx Emission Trends

NOx Adsorber Conversion Efficiency

NOx Adsorber Deterioration

Desulfation Effectiveness

PM Emission Trends

Medium-Duty Engine Project Test Results NOx Emission Trends

NREL National Renewable Energy Laboratory

NOx Adsorber Conversion Efficiency

NOx Adsorber Deterioration

NREL National Renewable Energy Laboratory

Desulfation Effectiveness

PM Emission Trends

Summary

- Fresh NOx adsorber system in conjunction with 15ppm sulfur fuel can achieve Tier 2 Bin 5 NOx emission levels for both platforms
- Desulfation strategies are effective in recovering NOx adsorber performance with some deterioration through 2000 hours for both platforms
- Aged and desulfurized NOx adsorber system in conjunction with 15ppm sulfur fuel achieved Tier 2 Bin 5 NOx emission levels for the passenger car platform, achieved 85-90% NOx conversion for the MD Engine platform
- DPF in conjunction with 15ppm sulfur fuel can achieve Tier 2 Bin 5 PM emission levels throughout aging for both platforms
- Detailed emissions information (e.g. CO, HC, and Unregulated species) are included in final report

Program Participants

Automobile: **DaimlerChrysler** Ford GM Toyota

Engines:

Caterpillar **Cummins Detroit Diesel** EMΔ **International Truck** & Engine **John Deere Mack Trucks**

Government: **CARB/SCAOMD** DOE EPA NRFL **ORNL**

Technology: **Battelle**

Argillon **ArvinMeritor Benteler Clean Diesel Tech.** Cornina Delphi **Donaldson Co.** Engelhard **Johnson Matthey MECA** NGK **Rhodia Robert Bosch Corp. STT Emtec AB Tenneco Automotive 3M** Umicore

Emission

Control:

Energy/ Additives:

American Chemistry Council ΑΡΙ BP Castrol **Chevron Oronite** Chevron Ciba **Conoco-Phillips** Crompton **Ergon Ethvl ExxonMobil** Infineum Lubrizol **Marathon Ashland Motiva NPRA Pennzoil-Ouaker State Shell Global Solutions Valvoline**

Acknowledgements

- Department of Energy, Office of FreedomCAR and Vehicle Technologies
- ORNL
- Battelle
- MECA
- APBF-DEC Industry partners for financial and in-kind support
- Technical Team members and their companies for their support and contributions

