Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel

Diesel Engine Emissions Reduction Conference
August 25th, 2005

Matthew Thornton, National Renewable Energy Laboratory
Marek Tatur, Heather Tyrer, Dean Tomazic, FEV Engine Technology
Phil Weber and Cynthia Webb, SwRI

NREL/PR-540-38639
Disclaimer and Government License

This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the “Government”) retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for Government purposes.

Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof.
Outline

- Project Overview
- Program goals and objectives
- Hardware overview
- Test procedures
- Test results
- Summary and outlook
APBF-DEC Projects

<table>
<thead>
<tr>
<th>NOx Adsorber/DPF</th>
<th>SCR/DPF</th>
<th>Lubes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV</td>
<td>SwRI</td>
<td>Ricardo</td>
</tr>
<tr>
<td>1.9L TDI</td>
<td>6.6L Isuzu Duramax</td>
<td>15L Cummins ISX</td>
</tr>
<tr>
<td>Audi A4 Avant</td>
<td>Chevrolet Silverado</td>
<td>No vehicle</td>
</tr>
</tbody>
</table>

Note: Images of Car, Engine, and Lubricant are placeholders for actual images.
Project Objectives for LD NOx Adsorber Projects: Examine fuel property effects on NAC/DPF systems

Approach:
• Demonstrate low emissions potential of diesel engines equipped with advanced fuel, NOx adsorbers, DPFs, EGR, double-wall exhaust
 - Goal: Tier 2 Bin 5 (0.07 g/mi NOx 0.01 g/mi PM)
• Age systems with Ultra Low S fuel for up to 2200 hrs
 - Periodic emissions evaluations during aging (before and after NOx adsorber desulfation)
 - Periodic unregulated emissions measurement with 15-ppm S refinery product
 - NOx adsorber desulfation performed on time based schedule
Project Outline

Project divided into three Tasks:

• Hardware procurement and operational strategy development
• System integration and optimization
• Performance and aging evaluation
 – Age ECS to 2000-2200 hours with 15-ppm S Fuel
 – 2,200 hours equal full useful lifetime of 120,000 miles
 – Emissions evaluation procedures performed every 100-200 hrs
 – Desulfations performed every 150-200 hours to start then 100 hours (and every 50 hours at the end for the Passenger Car platform)
Project Hardware Overview

Passenger Car

Engine Specification
- Arrangement: In-Line 4-Cylinder
- Displacement: 1.9 L
- Rated Power: 100 kW @ 4000 rpm
- Max. Torque: 330 Nm @ 2000 rpm

Medium-Duty Engine

Engine Specification
- Arrangement: 8-Cylinder V
- Displacement: 6.6 L
- Rated Power: 224 kW @ 3100 rpm
- Max. Torque: 705 Nm @ 1800 rpm
Passenger Car Project In-Line Emission Control System

Engine → Pre-Catalyst → Underbody NAC → CDPF → Exhaust

ECS-A: DOC + NAC
- Cell Density: 400 cpsi
- Volume: 1.34 L
- Diameter: 4.16 inch
- Length: 6 inch
- Wall Thickness: 4.5 mil

ECS-B: NAC

All ECS: NAC
- Cell Density: 350 cpsi
- Wall Thickness: 5.5 mil
- Volume: 2.5 L
- Diameter: 5.66 inch
- Length: 6 inch

Substrate Material: Cordierite
- Cell Geometry: Square

All ECS: CDPF
- Cell Density: 200 cpsi
- Wall Thickness: 14 mil
- Substrate Material: SiC
- Volume: 2.5 L
- Diameter: 5.66 inch
- Length: 6 inch
- Cell Geometry: Square
Test Procedures

Engine Dynamometer Test Cell:

Pre-Desulfation Procedure

1. Run 3x
 - 1 test cycle = 1 gas sample = 30 gas samples
 - 1 set of cycles = 1 PM sample = 10 PM samples

<table>
<thead>
<tr>
<th>Run</th>
<th>CLA4</th>
<th>HLA4</th>
<th>US06</th>
<th>HFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3 PM sample</td>
</tr>
</tbody>
</table>

| Post-Desulfation Procedure** |

1. Run 2x
 - 1 test cycle = 1 gas sample = 20 samples
 - 1 set of cycles = 1 PM sample = 7 PM samples

<table>
<thead>
<tr>
<th>Run 2x</th>
<th>CLA4</th>
<th>HLA4</th>
<th>US06</th>
<th>HFET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 PM sample</td>
</tr>
</tbody>
</table>

1 test cycle = 1 gas sample = 30 gas samples
1 set of cycles = 1 PM sample = 10 PM samples

1 test cycle = 1 gas sample = 20 samples
1 set of cycles = 1 PM sample = 7 PM samples

NREL National Renewable Energy Laboratory
Engine Change

1300-hour post-desulfurization tests were run without the regeneration strategy.
Passenger Car Project Test Results

NOx Adsorber Conversion Efficiency

Engine Change

1300-hour post-desulfurization tests were run without the regeneration strategy.

79%
Passenger Car Project Test Results

NOx Adsorber Deterioration

Change in NOx Conversion (% of Engine Out NOx) Between Desulfations

Difference

Difference Trend
Passenger Car Project Test Results

Desulfation Effectiveness

Increase in NO\textsubscript{X} Conversion (% of Engine Out NO\textsubscript{X}) at Each Desulfation

- Difference (Post-Pre)
- Difference Trend

NO\textsubscript{X} Conversion

Age (hours)
Passenger Car Project Test Results

PM Emission Trends

![Graph showing PM emission trends over age (hours)]
Medium-Duty Engine Project Test Results

NOx Emission Trends

The graph shows the NOx emissions over time for the medium-duty engine project test results. The x-axis represents the age of the engine in hours, ranging from 0 to 2000 hours. The y-axis represents the NOx emissions in grams per mile (g/mi), ranging from 0.0 to 1.0 g/mi. The data points indicate a trend of increasing NOx emissions with age, with error bars showing the variability in emissions. The graph also includes a line for desulfation and a line for NOx mean emissions.
Medium-Duty Engine Project Test Results

NOx Adsorber Conversion Efficiency

NOx Conversion vs. Age (hours)

- Desulfation
- NOx Mean
- Standard-D 15

NOx Mean 98.4%
Medium-Duty Engine Project Test Results

NOx Adsorber Deterioration

Change in NOx Conversion (% of Engine Out NOx) Between Desulfations

-14.0% -12.0% -10.0% -8.0% -6.0% -4.0% -2.0% 0.0%

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Age (hours)

NOx Conversion

Difference Difference Trend
Medium-Duty Engine Project Test Results

Desulfation Effectiveness

Increase in NO\textsubscript{X} Conversion (% of Engine Out NO\textsubscript{X}) at Each Desulfation
Medium-Duty Engine Project Test Results

PM Emission Trends

![Graph showing PM emission trends over age (hours)](image)

- Desulfation
- PM Mean
Summary

• Fresh NOx adsorber system in conjunction with 15ppm sulfur fuel can achieve Tier 2 Bin 5 NOx emission levels for both platforms
• Desulfation strategies are effective in recovering NOx adsorber performance with some deterioration through 2000 hours for both platforms
• Aged and desulfurized NOx adsorber system in conjunction with 15ppm sulfur fuel achieved Tier 2 Bin 5 NOx emission levels for the passenger car platform, achieved 85-90% NOx conversion for the MD Engine platform
• DPF in conjunction with 15ppm sulfur fuel can achieve Tier 2 Bin 5 PM emission levels throughout aging for both platforms
• Detailed emissions information (e.g. CO, HC, and Unregulated species) are included in final report
Program Participants

Automobile:
- DaimlerChrysler
- Ford
- GM
- Toyota

Government:
- CARB/SCAQMD
- DOE
- EPA
- NREL
- ORNL

Emission Control:
- Argillon
- ArvinMeritor
- Benteler
- Clean Diesel Tech.
- Corning
- Delphi
- Donaldson Co.
- Engelhard
- Johnson Matthey
- MECA
- NGK
- Rhodia
- Robert Bosch Corp.
- STT Emtec AB
- Tenneco Automotive
- 3M
- Umicore

Energy/ Additives:
- American Chemistry Council
- API
- BP
- Castrol
- Chevron Oronite
- Chevron
- Ciba
- Conoco-Phillips
- Crompton
- Ergon
- Ethyl
- ExxonMobil
- Infineum
- Lubrizol
- Marathon Ashland
- Motiva
- NPRA
- Pennzoil-Quaker State
- Shell Global Solutions
- Valvoline

Engines:
- Caterpillar
- Cummins
- Detroit Diesel
- EMA
- International Truck & Engine
- John Deere
- Mack Trucks

Technology:
- Battelle
Acknowledgements

• Department of Energy, Office of FreedomCAR and Vehicle Technologies
• ORNL
• Battelle
• MECA
• APBF-DEC Industry partners for financial and in-kind support
• Technical Team members and their companies for their support and contributions