Corrosion Protection of Metallic Bipolar Plates for Fuel Cells

May 22-26, DOE Hydrogen Program Review

John A. Turner, Heli Wang
National Renewable Energy Laboratory

Michael P. Brady
Oak Ridge National Laboratory

This presentation does not contain any proprietary or confidential information
Overview

Timeline
- Project start date: 2004
- Project end date: tbd
- Percent complete: tbd

Barriers
- Barriers addressed
 - Stack Material and Manufacturing costs.
 - Materials Durability

Budget
- Total project funding
 - DOE share: $196k
- Funding received in FY04: $40k
- Funding for FY05: $156k

Partners
- Interactions/ collaborations
 - Oak Ridge National Lab.
 - Plug Power
Approach and Objectives

• Our approach is two fold
 – Understanding the relationship between alloy composition and bipolar plate performance.
 – Study possible coating materials and methods.

• Objectives - FY 05 Goals
 – Corrosion testing of new alloys and coatings
 – Collaborate with ORNL to evaluate nitrided alloys and to determine best alloy composition for PEMFC.
 – Characterize conducting coatings on alloys and their performance in PEMFC environments.
 – Assemble test system for operation in the 100-200 °C range and study materials in this temperature range.
 – Development of corrosion tests for polyphosphoric acid environment at >150°C
Why Metallic Bipolar Plates

- Wide choices, high chemical stability, including choices for corrosion resistance
- High strength allowing thinner plates for high power density
- Existing low cost/high volume manufacturing techniques (e.g. stamping);
- High bulk electrical and thermal conductivities;
- Potential for low cost.

- DOE 2010 Technical Targets for Fuel Cell Stacks
 - Cost $35/kW
 - Durability 5000 hours
Challenges with Metallic Bipolar Plates in PEMFC

- Possible contamination of polymer membrane by dissolved metal ions
- Higher surface contact resistance due to surface oxides (such oxides provide excellent corrosion resistance however)
NREL/ORNL Collaboration

• Evaluated over 10 alloy compositions, both commercially available and synthesized;
• Evaluated the influence of nitridation parameters on the contact resistance and corrosion resistance in PEMFC environments, used for improving and adjusting the alloy composition and nitridation parameters;
• Filled a joint patent application for the nitridation of AISI446 alloy, finding 2 alloys suitable for PEMFC bipolar plates after nitridation.
Initial Success for Fe-Cr alloy via Nitrogen Modified Oxide Layer

- AISI446 and Modified AISI446: Ferritic, Fe-base;
- ICR significantly decreased, both as-nitrided and tested;
- Surface complex of oxygen-nitrogen mixture with Cr, Fe.
Nitrided AISI446 has excellent corrosion resistance in 1M H₂SO₄+2ppm F⁻ at 70 °C with air purge.
Time-dependent data for Nitrided AISI446 in simulated PEMFC environments

- Anodic behavior for nitrided AISI446 in PEMFC environments
 - cathode (a)
 - anode (b) (note the cathodic current).
- DOE target: 16 μA/cm2
Nitrided G-35™ and G-30® meet the ICR Goal

- Cr-nitrides formed on commercial Ni-base alloys;
- Corrosion test at GM and NREL show no increase in ICR;
- Complex conductive “oxy-nitride” after polarization (master’s thesis).
Developing lower cost alloys with low ICR

![Graph showing interfacial contact resistance vs. compaction force for different alloys.](image)

- Nitrided Al29-4CTM
- Nitrided AISI446 (Control)
- Nitrided ORNL Modified 446

Goal: <20 mΩ⋅cm²
And keep excellent corrosion resistance after modification

PEMFC anode

PEMFC cathode
ICR for the modified 446 after polarization in PEMFC environments?

ICR Goal

- Polarized 7.5h @0.6 V, Air purge
- Polarized 7.5h @-0.1V, H₂ purge

As received

2 X ICR, mOhm*cm²

Compaction force, N/cm²
Cost - DOE Targets

<table>
<thead>
<tr>
<th>Alloy</th>
<th>ICR@140 N/cm², mΩ·cm²</th>
<th>Current at –0.1 V (H₂ purge), µA/cm²</th>
<th>Current at 0.6 V (air purge), µA/cm²</th>
<th>Cost*, $/kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>349<sup>TM</sup></td>
<td>110</td>
<td>-4.5~2.0</td>
<td>0.5~0.8</td>
<td>4.22</td>
</tr>
<tr>
<td>AISI446</td>
<td>190</td>
<td>-2.0~1.0</td>
<td>0.3~1.0</td>
<td>4.76</td>
</tr>
<tr>
<td>2205</td>
<td>130</td>
<td>-0.5~+0.5</td>
<td>0.3~1.2</td>
<td>3.14</td>
</tr>
<tr>
<td>Nitrided AISI446</td>
<td>6.0</td>
<td>-1.7~0.2</td>
<td>0.7~1.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Modified AISI446</td>
<td>4.8</td>
<td>-9.0~0.2</td>
<td>1.5~4.5</td>
<td>N/A</td>
</tr>
<tr>
<td>DOE Target</td>
<td>20 mΩ·cm²</td>
<td><16 µA/cm²</td>
<td><16 µA/cm²</td>
<td>$10/kW</td>
</tr>
</tbody>
</table>

Note: Cost data were based on the base price of cold rolled coils from Allegheny Ludlum (see website), and by assuming 6 cells/kW for a PEMFC and the dimensions of a bipolar plate are 24 cm × 24 cm × 0.254 cm (which gives a 400 cm² utilization surface area in a 0.01 inch thick sheet).
Conductive SnO$_2$:F Coating

- High conductivity
- High stability in many different environments
- Volume production is available----widely used in PV industry
- May allow reduced cost with lower grade alloys.
- NREL expertise (National Center for Photovoltaics)
Performance of coated steels in PEMFC anode environment

- Excellent behavior of SnO$_2$:F/AISI446 is expected;
- Good corrosion resistance of SnO$_2$:F/AISI444 is surprising! But match with ICP analysis (see Table)
Fe, Cr, Ni ions concentration after polarized in PEMFC environments (average of 3 samples)

<table>
<thead>
<tr>
<th>Material</th>
<th>Ion concentration in PEMFC anode environment after 7.5h</th>
<th>Ion concentration in PEMFC cathode environment after 7.5h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fe, ppm</td>
<td>Cr, ppm</td>
</tr>
<tr>
<td>316L</td>
<td>21.18</td>
<td>4.60</td>
</tr>
<tr>
<td>317L</td>
<td>3.98</td>
<td>0.65</td>
</tr>
<tr>
<td>349TM</td>
<td>1.70</td>
<td>0.12</td>
</tr>
<tr>
<td>SnO₂/316L</td>
<td>10.83</td>
<td>1.97</td>
</tr>
<tr>
<td>SnO₂/317L</td>
<td>4.03</td>
<td>0.69</td>
</tr>
<tr>
<td>SnO₂/349TM</td>
<td>1.27</td>
<td>-</td>
</tr>
<tr>
<td>441</td>
<td>622.9</td>
<td>135.7</td>
</tr>
<tr>
<td>444</td>
<td>141.5</td>
<td>37.86</td>
</tr>
<tr>
<td>446</td>
<td>1.46</td>
<td>-</td>
</tr>
<tr>
<td>SnO₂/441</td>
<td>24.15</td>
<td>4.51</td>
</tr>
<tr>
<td>SnO₂/444</td>
<td>12.70</td>
<td>2.09</td>
</tr>
<tr>
<td>SnO₂/446</td>
<td>1.24</td>
<td>-</td>
</tr>
</tbody>
</table>
The Needs and Challenges of High Temperature (HT) bipolar plates

...Starting Point

• Desire of transportation industry;

• R&D on high temperature membrane, however, exact environments for HT PEMFC not yet defined!

• Accordingly, set HT at 150 - 170 °C, selected H₃PO₄ as electrolyte, evaluated over 12 “HT” epoxies, and chose the best;

• Modified test systems to suite the HT, working with native stainless steel and graphite bipolar plate for PAFC from PlugPower.
Dynamic polarization for 904L steel in H$_3$PO$_4$ at 170 °C

- New condition resulted in significant changes
- Passivation for the steel in both environments;
- High current noted even in the passivation region.
How about potentiostatic polarization for 904L steel in H$_3$PO$_4$ at 170 °C?

- At 0.1 V with H$_2$ purge, current slightly increases from 0.73 to 1.15 mA/cm2 after 15 minutes;
- At 0.7 V with air purge, current peaks at 5 minutes, then stabilized at 1.0-1.25 mA/cm2 after 15 minutes;
- Matches with dynamic polarization.
How about graphite (used in PAFC now)?

- Actual bipolar plate;
- Very low ICR with graphite;
- Tested at room temperature

Goal: <20 mΩ·cm²
Anodic behavior of graphite in H$_3$PO$_4$ at 170 °C with H$_2$ or air purge

- High currents
- 2 Tafel regions.
Dissemination of Results

Journal Papers

Conference Papers/Presentations

Patent Application

Future Work

- Continue NREL/ORNL collaboration with alloy development and nitridation
- Investigate new alloy compositions and coatings
- Bare alloys in HT PAFC environments;
- Nitrided alloys in HT environments;
- Coated steels in HT environments;
- Further NREL/PlugPower collaboration.
Hydrogen Safety

The most significant hydrogen hazard associated with this project is:
- Hydrogen atmosphere used during corrosion tests
Hydrogen Safety

Our approach to deal with this hazard is:

- Limit cell head space to <10ml and use low hydrogen flow rates.
- Perform experiments in a fume hood.
- Project activities are covered by a formal, standard operation procedure and reviewed by ES&H and approved by PI’s and cognizant managers.