2005 DOE Hydrogen Program Review
Hydrogen Codes and Standards

Jim Ohi
National Renewable Energy Laboratory
May 26, 2005

This presentation does not contain any proprietary or confidential information
Overview

Timeline

• Project start date: 10-1-04
• Project end date: 9-30-05
• Percent complete: 50

Barriers

• Codes and Standards Barriers addressed
  – Consensus national agenda on codes and standards (J,A,B,D,L)
  – Limited DOE role in the development of ISO standards and inadequate representation by government and industry at international forums (F,G,H,I,K)
  – Current large footprint requirement for hydrogen fueling stations (P,N,M)

Budget

• Total project funding
  – DOE share: $1.6M
  – Contractor share: $10K
• Funding received in FY04: $2.0M
• Funding for FY05: $1.6M

Partners

• National Hydrogen and Fuel Cells Codes and Standards Coordinating Committee
• FreedomCAR-President’s H₂ Fuel Initiative C&S Tech Team
• North American Hydrogen Fuel Quality Team
Objectives

• Develop and implement consensus national agenda on domestic and international codes and standards for hydrogen systems in commercial, residential, and transportation applications
• Enhance DOE’s role in development of ISO and other international standards and strengthen representation by government and industry at international forums
• Facilitate harmonization of requirements for hydrogen applications based on consensus R&D
• Integrate codes and standards activities from R&D to pre-commercialization
Approach

- Develop unified national agenda for codes and standards
  - National templates adopted by consensus of SDO/MCDs
    - accelerate development of priority standards
    - designate and support lead SDO/MCDs
    - facilitate access to standards/model codes through ANSI website
  - Coordinate national/international codes and standards activities
    - National H₂/Fuel Cells Codes and Standards Coordinating Committee

- Coordinate R&D through Codes and Standards Tech Team
  - R&D Roadmap
    - Hydrogen Behavior
    - Vehicles
    - Fuel Infrastructure
    - Fuel-Vehicle Interface
      - fuel quality specifications
      - integrated safety engineering

- Harmonize technical standards and global technical regulations
  - International template
Approach

DOE

CS Tech Team

R&D Roadmap

R&D Projects

National H2-FC C&S CC

National Template

US standards

Model codes

FMVSS

International Template

ISO standards

IEC standards

other standards

Global Technical Regulations

Safety Panel

Safety Plan
Approach

Research

Domestic Codes & Standards

Global Technical Regulations (GTRs)

R&D Roadmap

Stds

Codes

National Template

International Template

IEC, ISO

GRPE

GTRs
Approach: Overall Timetable

2004

- Release Scenarios
  - H₂ Behavior
  - FVC Formation
  - LFL

2006

- Materials Handbook
  - Whole System Design
  - Sensors

2008

- Setbacks
- Bulk Storage
- Containers
- Dispensing Systems
- Pipelines Fuel Specs

2010

- [R&D Roadmap]

2015

- [National Template]
- Commercialization
- Codes and Standards
- R&D
- Regulations
- Crashworthiness Modeling, Testing
- FMVSS
- Draft GTR Vehicle Systems
- Decision

[International Template]
Technical Accomplishments/Progress

• Unified national agenda for codes and standards
  – consolidated national coordination groups and activities
    • DOE, USFCC, NHA created National H2-FC C&S Coordinating Committee
    • establish national focal point and consensus on key C&S issues, needs
  – ANSI hydrogen portal (www.hcsp.ansi.org)
    • incorporated C&S matrix and website (www.fuelcellstandards.org)
    • agreement with key SDO to post and browse H₂/FC standards and model codes
  – work with all key SDO/MCO to develop essential standards and model codes

• Coordinate R&D to develop defensible standards for hydrogen systems
  – Codes and Standards Tech Team and R&D Roadmap implementation
  – initiate whole-system engineering research approach for hydrogen safety
  – coordinate long-term R&D/test plan for hydrogen fuel quality

• Harmonize technical standards and global technical regulations
  – member US Technical Advisory Group, ISO/TC197, Hydrogen Technologies
  – member of ISO/TC197 WG 12 to prepare hydrogen fuel quality specification
  – work with CGA and CSA to coordinate ISO/TC197 and IEC/TC105
Technical Accomplishments/Progress

• Support and facilitate development of standards and model codes
  – Draft standards for fueling systems, containers (on-board), sensors, fuel cells for hand-held devices and telecommunications under review
  – Draft standards for piping, bulk storage, composite containers, transportable containers under way
  – Fuel cell electric vehicle standards published, under review, or being developed
  – Model codes will provide for additional hydrogen applications
    • 2006 ed., International Code Council model codes
    • NFPA 52 and 55 under revision
Technical Accomplishments: Fuel Quality

H₂ quality

- Increase in H₂ fuel cost
  - Higher quality
  - Lower quality
  - Degradation fuel cell performance

Existing standards for H₂ quality

- JIS K0512
  - No specs for fuel cell vehicles
- ISO 14687
  - Common specs with internal combustion engine vehicles

R&D/Test Plan

Evaluate effects of impurities on PEMFC performance/durability

ISO H₂ fuel quality standard for PEMFC vehicles

Source: adapted from JARI
Technical Accomplishments: Development of International \( \text{H}_2 \) Fuel Quality Standard (PEMFC Road Vehicles-Anode)
Technical Accomplishments: International Template for Hydrogen Standards and Regulations

Standards/Codes

Key International Organizations:
IEC, ISO
Key Domestic Organizations:
ANSI, ASME, CGA, CSA, SAE, UL
ICC, NFPA
DOE, DOT, EPA, NASA, NIST
NHA, USFCC, CaFCP
Key Foreign Organizations
Japan: METI, NEDO, JARI
EU: FCHP

Coordination/Harmonization

DOE
DOC, DOT, EPA, NASA
API, ANSI, NHA, USFCC
US TAG chairs IEC, ISO
Workshop
Strategic Plan
Annual Plan and Review

Regulations

Key International Organizations:
UN/ECE WP29/GRPE, NAFTA
Key Domestic Organizations:
NHTSA (Crashworthiness)
RSPA (Transport, Pipelines)
EPA (Emissions)
Key Foreign Organizations
Japan: Transport Ministry
EU: ECE, TUV

Research, Testing, Validation

Key International Organizations
IPHE
Key Domestic Organizations:
ASTM, CaFCP, DOE, NHA, NASA, NIST
USFCC, national labs, universities
Key Foreign Organizations
Japan: Millennium Project, FCCJ, JARI
EU: FCTESTNET, FCTESTQA, HySafe
Canada: CFCTA

National Renewable Energy Laboratory
Technical Accomplishments: Harmonization of International Standards and Regulations

Japan: Millenium Project
EC: HFCP, HySafe, FCTESTNET
Canada: CFCTA

C&S Tech Team

R&D Roadmap

Create International Target Areas in R&D Roadmap

National Template → International Template

Include International Standards & GTRs under National Coordinating Committee

National H2-FC C&S CC

US TAGs ISO TC197, TC22/SC21
IEC TC105
WP29/GRPE--EPA/NHTSA
Responses to Previous Year Reviewers’ Comments

• Clear definition between portions of budget directed toward code setting bodies, . . . , etc., and that part . . . used specifically for R&D
  – R&D part (fuel quality, testing/validation, integrated engineering) are separate subtasks in FY05
  – National/international templates, subcontracts to SDOs are separate subtasks in FY05

• Gather international input if available
  – developing international template for standards and regulations
  – developing international collaboration on R&D for hydrogen safety, codes and standards
  – member of US delegation to ISO TC197 plenary
  – member of US TAG to ISO TC197
  – working with JARI, FCTESTNET, HySafe, HyApproval, etc.
Future Work: Codes and Standards Development

• Expand coordination role for national template
  – re-evaluate C&S development, synchronize with R&D
  – transition to performance-based standards
• Develop and implement international template for hydrogen-fueled vehicles based on GTR process
  – on-board storage components and subsystems
  – whole-vehicle safety
  – energy, environmental considerations
• Develop sustained industry participation in ISO, IEC, and GTR process to implement international template
  – bring international standards and regulations coordination under purview of National H2-FC C&S Coordinating Committee
  • coordinate linkages to EC and Japan
Future Work: R&D for Safety, Codes & Standards

- Conduct scenario analysis/risk assessment for R&D priorities
- Coordinate R&D for Vehicle-Fuel Interface Focus Area
  - integrated engineering and design
    - whole-system safety requirements and evaluation
      - link R&D in all four focus areas
    - system design approaches to meet technical requirements
      - innovative approaches to inherently safe, energy efficient design
    - case studies
      - link to DOE fleet vehicle validation sub-program, other demo-validation projects
  - fuel quality
    - develop and coordinate comprehensive testing project
- refueling station
  - coordinate feedback strategies, dispenser testing
  - develop, test siting template in key states, e.g., CA Hydrogen Highway
- Conduct and coordinate R&D for Detection and Mitigation
  - comprehensive testing and verification project
  - detection technology development, testing, and verification
Future Work: Address Hydrogen Fuel Specifications for Total Energy Cycle

**FUEL SUPPLIERS**
- **H₂ Production Source**
  - Hydrocarbon reforming
  - Water electrolysis
  - Hydrides
- **H₂ Transfer**
  - Pipelines
  - Bulk transport
  - On-site H₂ handling
- **H₂ Storage & Dispensing**
  - H₂ storage vessels
  - Dispensing H₂
  - Active H₂ storage material

**FUEL / VEHICLE INTERFACE**

**VEHICLE**
- **Storage**
  - Hydrogen Tank
  - H₂ Transfer
- **Powerplant**
  - Fuel Cell
    - Catalyst
    - Support Membrane
  - Fuel Cell System
    - Pumps
    - Balance of Plant

Source: SAE International

National Renewable Energy Laboratory
GM Fuel Cell Development / Rollout

Concept Cars
Is it real?

Demo Cars
Can we do it?

Pre-Commercial
Is it viable?

Production

Global Volumes

<30

100’s

1,000’s

Critical mass

Future Work: Time Phasing of Standards and Rulemaking with Technology Development

Guidelines & Best Practices

Rapid technology advances & demo experiences

Industry Standards

Validation & experience

Rule Making

FMVSS & UN GTR

Regulations

Commercial feasibility

Source: GM
Future Work: Timetable for Fuel Quality Standard

<table>
<thead>
<tr>
<th>2004</th>
<th>2007</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FCVs introduction stages</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial introduction (Fleet, Demo)</td>
<td></td>
<td>Mass production</td>
</tr>
<tr>
<td><strong>Corresponding fuel requirements</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO14687 Cor</td>
<td>Exclude “PEMFC” from “ISO14687-1”</td>
<td></td>
</tr>
<tr>
<td>TS14687-2</td>
<td>Technical Spec for demo/pre-commercial phase</td>
<td>Exp. 12/2011</td>
</tr>
<tr>
<td>Long term: ISO 14687-2 (includes global R&amp;D/testing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard for mass production</td>
</tr>
</tbody>
</table>

Source: adapted from JARI
Future Work: Fuel Quality

• Prepare Technical Corrigendum for ISO 14687
  – Remove references to fuel cells
• Prepare Technical Specification for hydrogen fuel quality for PEM fuel cells for road vehicles
  – Prepare consensus data table at next meeting, January 2005
• Refine single-cell baseline testing at University of Hawaii
  – Ballard, GM, UTC donating test hardware, expertise
• Develop joint R&D Plan for fuel quality
  – Part of overall Japan-US-EU collaboration on RD&D for hydrogen safety, codes and standards
    • METI/NEDO-DOE workshop to initiate joint RD&D Plan
      – invite EU participation to draft RD&D Plan
    • annual meeting on R&D(Japan, US, EU)
      – exchange information and data
      – coordinate strategy for international standards, GTRs
Future Work: Fuel Quality R&D

- Develop R&D plan and testing program as foundation for international hydrogen fuel quality specifications
  - Delineate key tasks, timetables, budgets
  - Build on JARI, ASTM, USFCC, SAE, CAFCP, U of Hawaii, FCTESTNET work
  - Incorporate into C&STT R&D Roadmap
- Develop collaborative international R&D Plan
  - Create and link expert teams in NA, Asia, EU
- Initiate R&D and Testing
  - Correlate activities to eliminate duplication of effort
  - Provide strong NA technical support in meeting objectives
- Review Technical Specification
- Develop new ISO standard based on R&D and test data
  - Joint NA-Asia-EU effort
## Future Work: Overall FQ R&D Plan Approach

<table>
<thead>
<tr>
<th>Single-Cell Test Protocol</th>
<th>Multi-cell Testing</th>
<th>Short-stack Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady-state Testing</td>
<td>Dynamic Testing</td>
<td>Duty cycle Testing</td>
</tr>
<tr>
<td>Single-constituent Testing</td>
<td>Dual-constituent Testing</td>
<td>Multi-constituent Testing</td>
</tr>
<tr>
<td>Short-term Testing</td>
<td>Long-term testing</td>
<td>Accelerated Life Testing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advanced Analytic Techniques</th>
<th>Failure Mechanisms</th>
<th>Basic Degradation Paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Material &amp; Compositions</td>
<td>Regeneration Conditions</td>
<td>Contamination Resistance</td>
</tr>
<tr>
<td>Life Cycle Testing</td>
<td>Accelerated Test Protocol</td>
<td>Accelerated Test Correlation</td>
</tr>
<tr>
<td>Fuel Cell Modeling</td>
<td>Material/Fuel Cell Modeling</td>
<td>Total System Modeling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Demonstration Information</th>
<th>Advanced Hydrogen Storage Material</th>
<th>Updated H₂ Fuel Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Systems Modeling</td>
<td>Production/Delivery Paths</td>
<td>H₂ Delivery/Vehicle Demos</td>
</tr>
<tr>
<td>Analyses of H₂ Fuel at Site</td>
<td>Systems/Cost/Data Analysis</td>
<td>Demo Operation/Cost Analysis Correlation</td>
</tr>
</tbody>
</table>
Future Work: Coordinated Approach for GTRs

- Develop and implement international template for US
  - achieve NA consensus on GTR(s) for hydrogen fuel cell vehicle systems
  - harmonize development of domestic standards and GTRs
    - overall strategy, objectives, priorities, timing
    - develop and support expert roster and assignment system
    - support and coordinate key ISO/IEC TAGs and WG/SC
- Manage international template through National H2FC C&S CC
  - annual objectives, review strategy and priorities
  - facilitate coordination through ISO TC197 US TAG website
  - coordinate with C&S Tech Team
- Facilitate collaborative R&D effort with Japan and EU
  - consensus testing/data to establish foundation for technical requirements
    - start with hydrogen behavior, fuel quality specifications
    - harmonized test and validation protocols
Partners for Hydrogen Fuel Quality

- DOE Hydrogen, Fuel Cells and Infrastructure Technologies
  - Pat Davis, Antonio Ruiz
- SAE International Hydrogen Quality Task Force
- USFCC Joint Hydrogen Quality Task Force
- ISO TC197 Working Group 12
  - Professor Yasuo Takagi, Musashi Institute of Technology, Convener
  - Dr. Hidenori Tomioka, JARI, Secretary
- ISO TC197 US TAG and WG12
- “North American H₂ FQ Team”
  - Bill Collins, UTC Fuel Cells (USFCC, SAE)
  - Tony Estrada, PG&E (ASTM)
  - Karen Hall, NHA (ISO TC197)
  - Rick Rocheleau, University of Hawaii
  - Jesse Schneider, Daimler-Chrysler (CaFCP)
  - Ron Sims, consultant to NREL (SAE)
  - Mike Steele, Stella Papasavva, GM (SAE)
  - Andrei Tchouvelev, Hydrogenics
  - Gerald Voecks, consultant to NREL
  - Silvia Wessel, Ballard Power Systems
  - Doug Wheeler, consultant to NREL
  - Robert Wichert, USFCC
Supplemental Slides

The following six slides are for the purposes of the reviewers only.
Publications and Presentations

Patents: Two under preparation for hydrogen safety sensor

Papers:

- Hydrogen Codes and Standards: An Overview of U.S. DOE Efforts (with DOE), WHEC 15, Yokohama, Japan

Presentations:

- ANSI Hydrogen Codes and Standards Portal, New York State Building Officials Conference, Albany, NY
- FCTESTNET conference and international workshop on codes and standards, Ulm, Germany
- NHA Annual Conference, Los Angeles, CA
- NHA workshops, Fuel Cell Seminar, San Antonio and SCAQMD, Diamond Bar, CA
- World Hydrogen Energy Conference 15, Yokohama, Japan
- ISO TC 197 Working Group 12, Newcastle, UK
- DOE Hydrogen Safety Panel, Washington, DC
Hydrogen Safety

To date, no hydrogen hazards have been associated with this project as no laboratory or field work has been conducted. Fuel quality testing initiated at the University of Hawaii is funded under a different program.
Hydrogen Safety

When fuel quality or other testing is initiated under this project, our approach to deal with hazards is to:

• follow all provisions of the Guidance for Safety Aspects of Proposed Hydrogen Projects issued by the DOE Hydrogen Safety Panel
• follow all relevant provisions contained in test protocols
• follow all standard operating procedures established by the institution conducting the tests
Globally Harmonized Vehicle Approval – Possible Pathway

Target date for GTR: 2010
GTR (Global Technical Regulation)
1998 Agreement

Target date for ECE: 2006
ECE Regulations
1958 Agreement

UN ECE WP.29

GRPE

H₂ and fuel cell vehicle GTR

CGH₂ and C₂ECE

GRPE Informal Group “Hydrogen/Fuel Cell Vehicles”

Authorities, testing agencies, component suppliers, vehicle manufacturers

EIHP2 Partnership

EIHP was a partnership between the European Hydrogen Industry and the European Commission. This consortium was created to provide inputs for regulatory activities on a European and global level to facilitate harmonized Procedures for the approval of hydrogen fuelled road vehicles.

ISO TC197

Hydrogen Technologies
Cooperation agreement between TC197 and TC22 was signed in June 2002

ISO TC22 SC21
Electric, Hybrid, FC Vehicles

ISO TC22 SC25
LPG, CNG, H₂ Road Vehicles

EIHP2 started cooperation with TC197 end of 2001 as no H₂ activities existed in TC22
Future Work: Test Plan-Part 1

Specifically address vehicular PEM fuel cell performance issues affected by H₂ fuel contaminants

- Identify relationships between contaminant type/level and fuel cell material properties, considering:
  - anode catalyst
  - membrane material
  - MEA assembly
  - contaminant species
  - fuel cell operating conditions

- Provide basis from which to better define H₂ fuel quality
  - use in conjunction with vehicle system requirements (storage, BOP, etc.)
  - serve as guide for H₂ fuel providers/suppliers

- Generate database from which alternative resolutions may result
  - alternate materials (MEA) that are contaminant ‘immune’
  - regenerative procedures (operational functions) for performance recovery

- Provide basis for international collaboration
  - address issues common to all PEM fuel cell vehicles
  - data to help guide DOE-funded activities