Deepwater Offshore Wind Technology Research Requirements

Walt Musial

Offshore Wind — U.S. Rationale

Why Go Offshore?

- Current turbine designs use onshore practices.
- Offshore experience in shallow water is essential for offshore wind energy deployment.
- Offshore turbines must close the loop between O&M and turbine design.
- High reliability designs
- Designs for in-situ repair
- Remote condition monitoring
- Turbine self diagnostics
- Safer and faster personnel transport

DOE Deepwater Wind Energy Workshops

Workshop Objectives

- Leverage experience and expertise from offshore industries such as oil and gas, marine engineers, offshore wind, oceanographers, ecoregions, and coastlines.
- Identify technology gaps to achieve a mature offshore wind industry in the United States.

U.S. Offshore Wind Energy Resource

DOE Offshore Wind Strategy

- Windy onshore sites are not close to coastal load centers
- Why Go Offshore?
 - Load centers are close to the offshore wind sites
 - The electric utility grid cannot be easily set up for interstate electric transmission
 - Offshore oil
 - Experience

Offshore Turbine Design Basis

Define external conditions

- Measurements – Extreme wind, wave/wind combinations, sea state, wind shear, ice, currents, tide, soil mechanics, ship collisions, turbulence, wind farm turbulence.

Design studies – Narrow the options

- What is the design load envelope?
- What foundations achieve the lowest cost?
- What are the design drivers?
- Code development
- Coupled platform/turbine responses
- Ocean Test Bed Validation

Testing and Validation

- Scale model testing – Configuration tradeoff studies in wind/wave tank.
- Hybrid testing – Wave simulations can be conducted in a subscale test-bed on land under real wind conditions to measure turbine response to rare load combinations.
- Full-scale blade and drivetrain test facilities – Larger wind turbine components must be tested and verified before field deployment.
- Field testing – Full-scale test loads in real ocean environments are essential.
 - Certification
 - Code validation
 - Safety verification

FY 2005 DOE Offshore Wind Energy Activities and Funding

- Offshore System Optimization
 - Higher speed rotors (lower aerodynamic noise constraints) will lower system weight and increase energy capture.
 - Larger turbine sizes can lower offshore balance of station and operation and maintenance costs.
 - Lower shipping and erection constraints may favor direct drive, yawing platforms, etc.
 - Greater weight penalties on floating systems will drive use of lighter materials (e.g., extended use of composites in towers, hubs, bedplates, shafts) and multi-rotor systems.
 - Windwave/hydrogen/storage energy technology convergences may spawn new energy supply models

Summary

- U.S. offshore wind energy potential is over 1000-GW.
- U.S. offshore wind resource is complementary to the on-shore wind resource due to geographic separation.
- U.S. deepwater wind technology is necessary for full offshore wind energy deployment.
- Offshore experience in shallow water is essential for deepwater technology to move forward.
- Expanded R&D (technological and environmental) is necessary for cost-effective deepwater wind energy.
- Commercial deepwater technology will take 10–15 years to develop.