Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

F.J. Pern and K. Touryan
National Renewable Energy Laboratory

Zh. Panosyan
The State Engineering University of Armenia

A.A. Gippius
P.N. Lebedev Physical Institute of the Russian Academy of Science

J.A. Kontsevoy
Pulsar Institute

Prepared for the 31st IEEE Photovoltaic Specialists Conference and Exhibition
Lake Buena Vista, Florida
January 3–7, 2005
NOTICE

The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste
DIAMOND-LIKE CARBON COATINGS AS ENCAPSULANTS
FOR PHOTOVOLTAIC SOLAR CELLS

F.J. Pern,1 Zh. Panosyan,2 A.A. Gippius,3 J.A. Kontsevoy,4 K. Touryan,1 S. Voskanyan,2 and Y. Yengibaryan2

1 National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO 80401
2 Department of Physics, the State Engineering University of Armenia, Yerevan, Armenia
3 P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
4 "Pulsar" Institute, Moscow, Russia

ABSTRACT

High-quality single layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates such as sapphires and solar cells has been performed at low substrate temperatures (50°C-80°C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85°C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies.

INTRODUCTION

Diamond-like carbon (DLC) coatings have received increasing attention in the past decade for their unique physical and electrical properties. They may have great potential in various applications, as reviewed independently by Lifshitz [1] and Grill [2] in 1999. For example, Park and Chin employed DLC to protect polycarbonate sheets from radiation-induced degradation [3]. Litovchenko and Klyui demonstrated that crystalline-Si (c-Si) solar cells deposited with N-doped DLC films by the r.f. glow-discharge method are useful for space applications [4]. Applebaum et al. investigated the electron-damaging effects on DLC-coated c-Si solar cells [5]. For DLC coatings to be practically useful for space or terrestrial solar cells, two issues have to be resolved. The first issue is the potential reflection loss resulting from the large refractive index of the DLC coatings, and the second issue is the need to resist the irradiation encountered in space. These issues are addressed in this project by using a bilayer structure of DLC coatings. In this design, the refractive index, energy bandgap, and thickness of the two DLC layers are the key factors that require good control in film growth. The first (bottom) DLC layer, adjacent to the p-n junction of a solar cell, should meet the conditions of antireflection and be thin enough that the requirements for the energy bandgap can be relaxed. This, in turn, can minimize the transmission loss. The second (top) DLC layer should have a lower refractive index to minimize reflection losses at the surface of the structure, a large energy bandgap to minimize absorption loss, and a thickness large enough to provide adequate radiation-stopping power. This project has focused on the developments of two DLC deposition technologies for single layer and bilayer DLC films with controllable energy bandgap and refractive index. The effect of deposition conditions, different gas mixtures, physical properties, and the ability of the DLC films to withstand weathering including UV, electron, and proton irradiations, are studied. The developed deposition technologies and related parameter controls have been successfully employed to produce high-quality DLC films serving as both antireflection coatings and protective encapsulants for c-Si and GaAs solar cells. These coatings also enhance cell efficiencies.

EXPERIMENTAL

IAPED is the main technique developed in this project for the growth of DLC films [6-8]. The Kashtan IAPED system, manufactured by the S. A. Vekshinsky Institute of Vacuum Technique, uses a reaction chamber that is modified with a radical ion source to initiate decomposition of hydrocarbons. The ion source with a cold cathode provides ionization of the gas by means of electron impact. The feed-gas mixture (e.g., C2H6, Ar, N2) consisted of 55% Ar, with the remaining 45% divided between C2H6 and N2. The DLC films were grown typically with ion energy between 20 and 140 eV, because ion energy higher than 140 eV would degrade solar cell properties and ion energy lower than 20 eV would produce films with refractive index too high to be useful for antireflection coatings. Plasma current was between 0.20
and 0.80 mA/cm² to ensure proper deposition efficiency and reduce defects in the DLC films. A specially designed substrate holder with a complex rotating capability allowed film nonuniformity of less than 5% within an area ≥ 110 cm² at relatively low deposition temperatures (50°~80°C). The other technique developed for DLC film growth is ECR deposition using a custom-built system. In this technique, the strength of the applied magnetic field is selected so that the resulting frequency of electron gyration is equal to that of the microwave frequency. When the two frequencies are matched, the plasma density is dramatically increased by the enhanced absorption of microwave energy by the plasma. Single layer DLC films from either method and bilayer films from subsequent depositions first by IAPED and then by ECR were prepared. The DLC films were characterized for their transmission, reflectance, Raman, adhesion strength, morphology, and resistance to strong acids, damp-heat exposure, and irradiations of UV, electrons, and protons.

RESULTS AND DISCUSSION

As stated in the Introduction, two issues have to be resolved for the DLC films to be practically useful for space or terrestrial solar cells: (1) the potential reflection loss resulting from the large refractive index of the DLC coating and (2) the resistance to the irradiation in space. These issues are addressed in this project by using a bilayer structure of DLC coatings as shown in Fig. 1. The first layer (adjacent to the p-n junction of the PV cell) should possess the properties that meet the conditions of antireflection, that is

\[n_{DLC(1)} = \sqrt{n_{DLC(2)} \cdot n_{Si}} \]

and

\[d_{DLC(1)} = \frac{\lambda}{4n_{DLC(1)}} \]

where \(\lambda \) is the wavelength corresponding to maximal antireflection, and \(n_{DLC(1)} \) and \(n_{DLC(2)} \) are the refractive indexes of the two DLC layers.

Accordingly, the bottom layer (DLC₁) should possess a high refractive index and a thickness of 60~80 nm. The minimal thickness of this layer makes the requirements for the energy bandgap less severe than those for the second layer. The top layer (DLC₂) should possess a low refractive index to minimize reflection losses at the surface of the structure with a large energy bandgap to minimize absorption losses and a thickness high enough to provide adequate resistance to radiation. The bilayer-structured DLC can be fabricated by using IAPED for the bottom (first) layer followed by ECR for the top (second) layer, or just by IAPED with different compositions for both layers.

Optically, the DLC film’s thickness affected its transmittance (not shown) and reflectance spectra. The latter is illustrated in Fig. 2 for some DLC films of various thicknesses deposited by IAPED on crystalline-Si wafers. The table illustrates the effects of deposition conditions, concentration of C₇H₈, and 0.80 mA/cm² to ensure proper deposition efficiency and reduce defects in the DLC films. A specially designed substrate holder with a complex rotating capability allowed film nonuniformity of less than 5% within an area ≥ 110 cm² at relatively low deposition temperatures (50°~80°C). The other technique developed for DLC film growth is ECR deposition using a custom-built system. In this technique, the strength of the applied magnetic field is selected so that the resulting frequency of electron gyration is equal to that of the microwave frequency. When the two frequencies are matched, the plasma density is dramatically increased by the enhanced absorption of microwave energy by the plasma. Single layer DLC films from either method and bilayer films from subsequent depositions first by IAPED and then by ECR were prepared. The DLC films were characterized for their transmission, reflectance, Raman, adhesion strength, morphology, and resistance to strong acids, damp-heat exposure, and irradiations of UV, electrons, and protons.

RESULTS AND DISCUSSION

As stated in the Introduction, two issues have to be resolved for the DLC films to be practically useful for space or terrestrial solar cells: (1) the potential reflection loss resulting from the large refractive index of the DLC coating and (2) the resistance to the irradiation in space. These issues are addressed in this project by using a bilayer structure of DLC coatings as shown in Fig. 1. The first layer (adjacent to the p-n junction of the PV cell) should possess the properties that meet the conditions of antireflection, that is

\[n_{DLC(1)} = \sqrt{n_{DLC(2)} \cdot n_{Si}} \]

and

\[d_{DLC(1)} = \frac{\lambda}{4n_{DLC(1)}} \]

where \(\lambda \) is the wavelength corresponding to maximal antireflection, and \(n_{DLC(1)} \) and \(n_{DLC(2)} \) are the refractive indexes of the two DLC layers.

Accordingly, the bottom layer (DLC₁) should possess a high refractive index and a thickness of 60~80 nm. The minimal thickness of this layer makes the requirements for the energy bandgap less severe than those for the second layer. The top layer (DLC₂) should possess a low refractive index to minimize reflection losses at the surface of the structure with a large energy bandgap to minimize absorption losses and a thickness high enough to provide adequate resistance to radiation. The bilayer-structured DLC can be fabricated by using IAPED for the bottom (first) layer followed by ECR for the top (second) layer, or just by IAPED with different compositions for both layers.

Optically, the DLC film’s thickness affected its transmittance (not shown) and reflectance spectra. The latter is illustrated in Fig. 2 for some DLC films of various thicknesses deposited by IAPED on crystalline-Si wafers. The table illustrates the effects of deposition conditions, concentration of C₇H₈,

<table>
<thead>
<tr>
<th>No. of Si sample</th>
<th>U_ac (kV)</th>
<th>I_ac (mA)</th>
<th>J_p (mA/cm²)</th>
<th>U_b (V)</th>
<th>Pressure (pascal)</th>
<th>C_H₈ᵦ (%)</th>
<th><E_par> (eV)</th>
<th>Thickness (nm)</th>
<th>R. I. n</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>2.5</td>
<td>30</td>
<td>0.20</td>
<td>-300</td>
<td>4x10⁻³</td>
<td>35</td>
<td>90</td>
<td>240</td>
<td>1.48</td>
</tr>
<tr>
<td>78</td>
<td>2.6</td>
<td>35</td>
<td>0.25</td>
<td>-350</td>
<td>6x10⁻³</td>
<td>28</td>
<td>100</td>
<td>250</td>
<td>2.00</td>
</tr>
<tr>
<td>79</td>
<td>2.8</td>
<td>40</td>
<td>0.30</td>
<td>-400</td>
<td>8x10⁻³</td>
<td>24</td>
<td>140</td>
<td>290</td>
<td>2.10</td>
</tr>
<tr>
<td>86</td>
<td>2.2</td>
<td>80</td>
<td>0.60</td>
<td>-250</td>
<td>9x10⁻³</td>
<td>18</td>
<td>60</td>
<td>185</td>
<td>2.40</td>
</tr>
<tr>
<td>95</td>
<td>2.3</td>
<td>100</td>
<td>0.65</td>
<td>-300</td>
<td>1x10⁻²</td>
<td>12</td>
<td>65</td>
<td>196</td>
<td>2.45</td>
</tr>
<tr>
<td>93</td>
<td>2.4</td>
<td>120</td>
<td>0.80</td>
<td>-350</td>
<td>3x10⁻²</td>
<td>15</td>
<td>70</td>
<td>200</td>
<td>2.35</td>
</tr>
<tr>
<td>99</td>
<td>1.5</td>
<td>45</td>
<td>0.35</td>
<td>-20</td>
<td>2x10⁻²</td>
<td>10</td>
<td>20</td>
<td>194</td>
<td>2.55</td>
</tr>
<tr>
<td>98</td>
<td>1.8</td>
<td>50</td>
<td>0.40</td>
<td>-50</td>
<td>5x10⁻²</td>
<td>8</td>
<td>25</td>
<td>192</td>
<td>2.60</td>
</tr>
<tr>
<td>91</td>
<td>2.0</td>
<td>60</td>
<td>0.45</td>
<td>-100</td>
<td>7x10⁻²</td>
<td>4</td>
<td>35</td>
<td>190</td>
<td>2.57</td>
</tr>
</tbody>
</table>
Results of Raman shift analysis for these films in Fig. 3 show a broad emission peak centered at \(\sim 1535 \text{ cm}^{-1} \) compared to the sharp peak at 1332 \(\text{cm}^{-1} \), indicating the DLC films are primarily amorphous, but with a predominant characteristic of sp\(^3\). An increase in the cell efficiency on c-Si and GaAs solar cells was obtained when they were coated with DLC films. The current-voltage and power-voltage curves for a c-Si cell before and after a single layer DLC film was deposited is shown in Fig. 4. If the surface of c-Si cell was first cleaned with ions, a higher increase of cell efficiency was obtained in the cell efficiency was attributed primarily to the effect of anti-reflection of the DLC coating, although contribution by reduced surface boundary recombination loss was also possible. For the GaAs cell sample, the efficiency improvements are shown in Table 3. In this case, the first layer DLC coating was applied by IAPED on the GaAs cell whose original ZnS AR coating was removed, resulting in a cell increase from 9.26% to 11.0%. With second DLC layer deposited by ECR, the cell efficiency increased further to 12.5%, higher than the 12.2% with ZnS AR coating. This demonstrates the feasibility of depositing bilayer-structured DLC coating by the two deposition technologies. The bilayer-structured DLC coating was also fabricated by using IAPED method with continuous composition gradient. The DLC coatings have also been applied successfully to thin-film amorphous Si cells and mini-modules. These results will be presented elsewhere.

The DLC films were very resistant to the attacks of high humidity at high temperature and mineral acids such as HCl, HNO\(_3\), and H\(_2\)SO\(_4\), as demonstrated in Table 4 for Si cells with DLC coatings. In comparison, ZnS is easily attacked by mineral acids. The DLC films on Si wafers showed virtually no change in reflectance after 762h of damp-heat exposure at 85°C and 85% relative humidity (RH). The DLC films deposited on Si wafer or cell were very resistant to mechanical scratch and ultrasonication tests, no scratch-off or peel-off was observed. They also exhibited excellent stabilities against UV, proton, and electron irradiations, as illustrated in Figs. 5 and 6, showing very little change in the spectral efficiency of Si cells when protected by 1.5-\(\mu \)m DLC films (Fig. 5) and small change in the transmittance spectrum of 0.51-\(\mu \)m DLC films on sapphire (Fig. 6) before and after irradiation by protons and electrons, respectively.

Table 2. Energy gap and refraction index of DLC films grown by ECR technique with various reactant species

<table>
<thead>
<tr>
<th>Reactant Species</th>
<th>Energy Gap (E_{bg}) (eV)</th>
<th>Refractive Index, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_3)COCH(_3)</td>
<td>2.85</td>
<td>1.6</td>
</tr>
<tr>
<td>C(_2)H(_4)OC(_2)H(_5)</td>
<td>2.65</td>
<td>1.65</td>
</tr>
<tr>
<td>CH(_3)CO(_2)H(_5)</td>
<td>2.4</td>
<td>1.75</td>
</tr>
<tr>
<td>C(_2)H(_2)OH</td>
<td>2.9</td>
<td>1.54</td>
</tr>
<tr>
<td>C(_2)H(_4)OH</td>
<td>2.5</td>
<td>2.05</td>
</tr>
<tr>
<td>CH(_3)OH</td>
<td>3.0</td>
<td>1.54</td>
</tr>
<tr>
<td>C(_2)H(_5)OH</td>
<td>3.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 3. Cell parameters for a GaAs solar cell without and with DLC coating (DLC1 layer by IAPED, 60 nm thick; DLC2 layer by ECD, 900 nm thick)

<table>
<thead>
<tr>
<th>Solar Cell + Coating</th>
<th>(I_{sc}) (mA)</th>
<th>(V_{oc}) (mV)</th>
<th>(I_{max}) (mA)</th>
<th>(V_{max}) (mV)</th>
<th>Eff. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Cell with ZnS AR</td>
<td>82</td>
<td>960</td>
<td>76</td>
<td>760</td>
<td>12.2</td>
</tr>
<tr>
<td>No AR</td>
<td>62</td>
<td>940</td>
<td>56</td>
<td>760</td>
<td>9.26</td>
</tr>
<tr>
<td>(ZnS removed)</td>
<td>74</td>
<td>960</td>
<td>68</td>
<td>760</td>
<td>11.0</td>
</tr>
<tr>
<td>DLC(_1)</td>
<td>84</td>
<td>960</td>
<td>80</td>
<td>740</td>
<td>12.5</td>
</tr>
<tr>
<td>DLC(_1)+DLC(_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Raman spectra comparing the DLC deposited on Si wafers as in Fig. 1 with a blank Si wafer and a diamond reference.

Fig. 4. Current-voltage and power-voltage curves for a \(\sim 100-\text{cm}^2 \) c-Si solar cell without (1, 3) and with (2, 4) a DLC coating by IAPED.
CONCLUSIONS

High-quality DLC films were obtained using ion-assisted plasma-enhanced and electron cyclotron resonance deposition technologies. The two technologies allowed DLC film fabrications at low temperatures with good spatial uniformity. Single and bilayer DLC films were obtained with good control of the deposition parameters and feed-gas mixture for desired transmittance, reflectance, thickness, and refractive index that can be fine-tuned in the range of 1.5~2.6, and an energy bandgap of up to 4.0 eV. The DLC films, when deposited on crystalline Si wafers, have shown excellent stability against mineral acids and prolonged damp heat exposure, high adhesion strength, and excellent stability against irradiations. Serving as both an antireflection coating and a protective encapsulant, the DLC films enhanced the efficiency of c-Si and GaAs solar cells.

ACKNOWLEDGEMENTS

The authors thank Drs. M.-J. Seong and S.-J. Yoon at NREL for the Raman characterization. This work was supported by the U.S. Department of Energy under the Initiatives for Proliferation Prevention program (IPP) Contract No. AAT-1-31902-01.

REFERENCES

Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

Abstract

High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50°C–80°C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85°C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies.