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ABSTRACT 
 
 High-quality single layer and bilayer diamond-like 
carbon (DLC) thin films are fabricated by two technologies, 
namely, ion-assisted plasma-enhanced deposition (IAPED) 
and electron cyclotron resonance (ECR) deposition. 
Deposition on various substrates such as sapphires and 
solar cells has been performed at low substrate 
temperatures (50o~80oC). The two deposition technologies 
allow good control over the growth conditions to produce 
DLC films with desired optical properties, thickness, and 
energy bandgap. The bilayer structured DLC can be 
fabricated by using IAPED for the bottom layer followed by 
ECR for the top layer, or just by IAPED for both layers with 
different compositions. The DLC films have shown good 
spatial uniformity, density, microhardness, and adhesion 
strength. They exhibit excellent stability against attack by 
strong acids, prolonged damp-heat exposure at 85oC and 
85% relative humidity, mechanical scratch, ultrasonication, 
and irradiation by ultraviolet (UV), protons, and electrons. 
When deposited on crystalline Si and GaAs solar cells in 
single layer and/or bilayer structure, the DLC films not only 
serve as antireflection coating and protective encapsulant, 
but also improve the cell efficiencies.  
 

INTRODUCTION 
 
 Diamond-like carbon (DLC) coatings have received 
increasing attention in the past decade for their unique 
physical and electrical properties. They may have great 
potential in various applications, as reviewed 
independently by Lifshitz [1] and Grill [2] in 1999. For 
example, Park and Chin employed DLC to protect 
polycarbonate sheets from radiation-induced degradation 
[3]. Litovchenko and Klyui demonstrated that crystalline-Si 
(c-Si) solar cells deposited with N-doped DLC films by the 
r.f. glow-discharge method are useful for space 
applications [4]. Applebaum et al. investigated the 
electron-damaging effects on DLC-coated c-Si solar cells 
[5]. For DLC coatings to be practically useful for space or 
terrestrial solar cells, two issues have to be resolved. The 
first issue is the potential reflection loss resulting from the 
large refractive index of the DLC coatings, and the second 
issue is the need to resist the irradiation encountered in 

space. These issues are addressed in this project by using 
a bilayer structure of DLC coatings. In this design, the 
refractive index, energy bandgap, and thickness of the two 
DLC layers are the key factors that require good control in 
film growth. The first (bottom) DLC layer, adjacent to the 
p-n junction of a solar cell, should meet the conditions of 
antireflection and be thin enough that the requirements for 
the energy bandgap can be relaxed. This, in turn, can 
minimize the transmission loss. The second (top) DLC 
layer should have a lower refractive index to minimize 
reflection losses at the surface of the structure, a large 
energy bandgap to minimize absorption loss, and a 
thickness large enough to provide adequate radiation-
stopping power. This project has focused on the 
developments of two DLC deposition technologies for 
single layer and bilayer DLC films with controllable energy 
bandgap and refractive index. The effect of deposition 
conditions, different gas mixtures, physical properties, and 
the ability of the DLC films to withstand weathering 
including UV, electron, and proton irradiations, are studied. 
The developed deposition technologies and related 
parameter controls have been successfully employed to 
produce high-quality DLC films serving as both 
antireflectance coatings and protective encapsulants for c-
Si and GaAs solar cells. These coatings also enhance cell 
efficiencies.  
 

EXPERIMENTAL 
 
 IAPED is the main technique developed in this 
project for the growth of DLC films [6-8], The Kashtan 
IAPED system, manufactured by the S. A. Vekshinsky 
Institute of Vacuum Technique, uses a reaction chamber 
that is modified with a radical ion source to initiate 
decomposition of hydrocarbons. The ion source with a 
cold cathode provides ionization of the gas by means of 
electron impact. The feed-gas mixture (e.g., C7H8, Ar, N2) 
consisted of 55% Ar, with the remaining 45% divided 
between C7H8 and N2. The DLC films were grown typically 
with ion energy between 20 and 140 eV, because ion 
energy higher than 140 eV would degrade solar cell 
properties and ion energy lower than 20 eV would produce 
films with refractive index too high to be useful for 
antireflection coatings. Plasma current was between 0.20 
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and 0.80 mA/cm2 to ensure proper deposition efficiency 
and reduce defects in the DLC films. A specially designed 
substrate holder with a complex rotating capability allowed 
film nonuniformity of less than 5% within an area ≥ 110 
cm2 at relatively low deposition temperatures (50o~80ºC). 
The other technique developed for DLC film growth is 
ECR deposition using a custom-built system. In this 
technique, the strength of the applied magnetic field is 
selected so that the resulting frequency of electron 
gyration is equal to that of the microwave frequency. 
When the two frequencies are matched, the plasma 
density is dramatically increased by the enhanced 
absorption of microwave energy by the plasma. Single 
layer DLC films from either method and bilayer films from 
subsequent depositions first by IAPED and then by ECR 
were prepared. The DLC films were characterized for their 
transmission, reflectance, Raman, adhesion strength, 
morphology, and resistance to strong acids, damp-heat 
exposure, and irradiations of UV, electrons, and protons. 

Fig. 1. Cross-section of PV cell with contact grid and 
bilayer DLC film encapsulant. 
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RESULTS AND DISCUSSION 
 
 As stated in the Introduction, two issues have to be 
resolved for the DLC films to be practically useful for 
space or terrestrial solar cells: (1) the potential reflection 
loss resulting from the large refractive index of the DLC 
coating and (2) the resistance to the irradiation in space. 
These issues are addressed in this project by using a 
bilayer structure of DLC coatings as shown in Fig. 1. The 
first layer (adjacent to the p-n junction of the PV cell) 
should possess the properties that meet the conditions of 
antireflection, that is 

Fig. 2. Reflectance spectra of single layer DLC films of 
various thickness deposited by IAPED on crystalline-Si 
wafers. 

 

 SiDLCDLC nnn ⋅= )2()1(       
 and        
 d nDLC DLC( ) ( )/1 14= λ  , 
 
where λ is the wavelength corresponding to maximal 
antireflection, and nDLC(1) and NDLC(2) are the refractive 
indexes of the two DLC layers. 
 
 Accordingly, the bottom layer (DLC1) should possess 
a high refractive index and a thickness of 60~80 nm. The 
minimal thickness of this layer makes the requirements for 
the energy bandgap less severe than those for the second 
layer. The top layer (DLC2) should possess a low 

refractive index to minimize reflection losses at the surface 
of the structure with a large energy bandgap to minimize 
absorption losses and a thickness high enough to provide 
adequate resistance to radiation. The bilayer-structured 
DLC can be fabricated by using IAPED for the bottom (first) 
layer followed by ECR for the top (second) layer, or just by 
IAPED with different compositions for both layers. 
 

Optically, the DLC film’s thickness affected its 
transmittance (not shown) and reflectance spectra. The 
latter is illustrated in Fig. 2 for some DLC films of various 
thicknesses deposited on Si substrates by IAPED. As 
seen, optimal reduction in reflectance loss can be 
obtained with adequate film thickness. Table 1 illustrates 
the effects of deposition conditions, concentration of C7H8,

Table 1.  Refractive indexes (n) and thickness (d) of DLC films grown by IAPED using C7H8 deposited under various 
conditions of anode-cathode voltage, Uac, current density, bias voltage, Ub, and average ion kinetic energy, <Ek>. 

No. of Si     Uac  Iac   Jp   Ub  Pressure C7H8 <Ek> Thickness R. I. 
 sample (kV) (mA) (mA/cm2)  (V) (pascal) (%)  (eV) d (nm)           n 
    85 2.5 30 0.20 -300 4x10-3 35 90 240 1.48 
 78 2.6 35 0.25 -350 6x10-3 28  100 250 2.00 
 79 2.8 40 0.30 -400 8x10-3 24  140 290 2.10 
 86 2.2 80 0.60 -250 9x10-3 18 60 185 2.40 
 95 2.3  100 0.65 -300 1x10-2 12 65 196 2.45 
 93 2.4  120 0.80 -350 3x10-2 15 70 200 2.35 
 99 1.5 45 0.35   -20 2x10-2 10 20 194 2.55 
 98 1.8 50 0.40   -50 5x10-2   8 25 192 2.60 
 91 2.0 60 0.45 -100 7x10-2   4 35 190 2.57 
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and film thickness on the refractive index, n, of DLC films 
deposited by IAPED on monocrystalline Si wafers. These 
results clearly demonstrate that, by controlling the various 
parameters, either single layer or bilayer DLC films of 
continuously varying compositions can be conveniently 
grown by the IAPED method. On the other hand, using 
different reactant species, from ketones to alcohols, DLC 
films of different energy bandgaps, 2.4 eV < Ebg < 3.0 eV, 
and refractive indexes, 1.54 < n < 2.05, were obtained by 
the ECR method, as shown in Table 2.  
 

Results of Raman shift analysis for these films in Fig. 
3 show a broad emission peak centered at ~1535 cm-1 
compared to the sharp peak at 1332 cm-1 for sp3 of a pure 
diamond, confirming that the DLC films are primarily 
amorphous, but with a predominant characteristic of sp3.  
An increase in the cell efficiency on c-Si and GaAs solar 
cells was obtained when they were coated with DLC films. 
The current-voltage and power-voltage curves for a c-Si 
cell before and after a single layer DLC film was deposited 
is shown in Fig. 4. If the surface of c-Si cell was first 
cleaned with ions, a higher increase of cell efficiency was 
obtained with DLC coating (figure not shown). The 
increase in the cell efficiency was attributed primarily to 

the effect of anti-reflection of the DLC coating, although 
contribution by reduced surface boundary recombination 
loss was also possible. For the GaAs cell sample, the 
efficiency improvements are shown in Table 3. In this case, 
the first layer DLC coating was applied by IAPED on the 
GaAs cell whose original ZnS AR coating was removed, 
resulting in a cell increase from 9.26% to 11.0%. With 
second DLC layer deposited by ECR, the cell efficiency 
increased further to 12.5%, higher than the 12.2% with 
ZnS AR coating. This demonstrates the feasibility of 
depositing bilayer-structured DLC coating by the two 
deposition technologies. The bilayer-structured DLC 
coating was also fabricated by using IAPED method with 
continuous composition gradient. The DLC coatings have 
also been applied successfully to thin-film amorphous Si 
cells and mini-modules. These results will be presented 
elsewhere. 

Table 2. Energy gap and refraction index of DLC films 
grown by ECR technique with various reactant species 
 

Reactant Energy Gap Refractive  
Species Ebg (eV) Index, n 
CH3COCH3 2.85 1.6 
C2H5OC2H5 2.65 1.65 
CH3COC2H5 2.4 1.75 
C2H5OH 2.9 1.54 
C4H9OH 2.5 2.05 
CH3OH 3.0 1.54 
C3H7OH 3.0 1.6 

Table 3.  Cell parameters for a GaAs solar cell without 
and with DLC coating (DLC1 layer by IAPED, 60 nm 
thick; DLC2 layer by ECD, 900 nm thick) 
 

Solar Cell Isc Voc Imax Vmax Eff.  
+ Coating (mA)  (mV)  (mA)  (mV)  (%) 

Original Cell 82 960 76 760 12.2 
with ZnS AR 
No AR 62 940 56 760 9.26 
(ZnS removed) 
DLC1 74 960 68 760 11.0 
DLC1+DLC2 84 960 80 740 12.5 
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Fig. 3.  Raman spectra comparing the DLC deposited 
on Si wafers as in Fig. 1 with a blank Si wafer and a 
diamond reference. 
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 The DLC films were very resistant to the attacks of 
high humidity at high temperature and mineral acids such 
as HCl, HNO3, and H2SO4, as demonstrated in Table 4 for 
Si cells with DLC coatings. In comparison, ZnS is easily 
attacked by mineral acids. The DLC films on Si wafers 
showed virtually no change in reflectance after 762h of 
damp-heat exposure at 85oC and 85% relative humidity 
(RH). The DLC films deposited on Si wafer or cell were 
very resistant to mechanical scratch and ultrasonication 
tests, no scratch-off or peel-off was observed. They also 
exhibited excellent stabilities against UV, proton, and 
electron irradiations, as illustrated in Figs. 5 and 6, 
showing very little change in the spectral efficiency of Si 
cells when protected by 1.5-µm DLC films (Fig. 5) and 
small change in the transmittance spectrum of 0.51-µm 
DLC films on sapphire (Fig. 6) before and after irradiation 
by protons and electrons, respectively.   

Fig. 4. Current-voltage and power-voltage curves for a 
~100-cm2 c-Si solar cell without (1, 3) and with (2, 4) a 
DLC coating by IAPED.  
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CONCLUSIONS 
 
 High-quality DLC films were obtained using ion-
assisted plasma-enhanced and electron cyclotron 
resonance deposition technologies. The two technologies 
allowed DLC film fabrications at low temperatures with 
good spatial uniformity. Single and bilayer DLC films were 
obtained with good control of the deposition parameters 
and feed-gas mixture for desired transmittance, 
reflectance, thickness, and refractive index that can be 
fine-tuned in the range of 1.5~2.6, and an energy bandgap 
of up to 4.0 eV. The DLC films, when deposited on 
crystalline Si wafers, have shown excellent stability 
against mineral acids and prolonged damp heat exposure, 
high adhesion strength, and excellent stability against 
irradiations. Serving as both an antireflection coating and 
a protective encapsulant, the DLC films enhanced the 
efficiency of c-Si and GaAs solar cells.  
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Fig. 5. Spectral efficiency of three Si PV cells without 
and with 1.5-µm DLC coating exposed to two levels of 
proton irradiation, 1014/cm2 20 keV and 1013/cm2 150 
keV. 
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Table 4. Efficiencies of c-Si PV cells with DLC films 
grown at various conditions before and after 
weathering at 80o-90°C and 90% RH for 20 h (W.T.) 
and chemical stability tests* (C.T.) 
Cell <Ek> C7H8 d    Cell Efficiency (%) 
ID (eV)  (%) (nm)  Initial After  After 
                                                             W.T.  C.T. 
30 55 22 80 9.87 9.85 9.78 
41 70 16 80 9.71 9.75 9.58 
42 65 13 75 8.90 8.93 8.78 
43 60 12 85 9.27 9.23 9.28 
44 75 10 85 9.11 9.18 9.14 
45 65 14 80 8.82 8.90 8.80 

* Chemical stability tests included sequentially: 
1. concentrated HNO3 acid, 30 min, 25°C 
2. diluted (1%) HNO3 acid, 1 h, 25°C 
3. concentrated H2SO4 acid, 30 min, 25°C 
4. diluted (1%) H2SO4 acid, 1 h, 25°C 
5. saturated solution of NaCl (sea fog simulation), 40 

h, 25o-30°C 
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