Hydrogenated Amorphous SiliconEmitter and Back-Surface-FieldContacts for Crystalline SiliconSolar Cells

National Renewable Energy Laboratory

V. Yelundur and A. Rohatgi
Georgia Institute of Technology

Presented at the 2004 DOE Solar Energy TechnologiesProgram Review Meeting
October 25-28, 2004
Denver, Colorado
NOTICE

The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste
Hydrogenated Amorphous Silicon Emitter and Back-Surface-Field Contacts for Crystalline Silicon Solar Cells

1 National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
2 Georgia Institute of Technology, 777 Atlantic Dr., Atlanta, GA 30332

*E-mail: tihu_wang@nrel.gov

ABSTRACT

Thin hydrogenated amorphous silicon (a-Si:H) layers deposited by hot-wire chemical vapor deposition (HWCVD) are investigated as emitters and back-surface-field (BSF) contacts to make silicon heterojunction solar cells on p-type crystalline silicon wafers. A common requirement for excellent emitter and BSF quality is minimization of interface recombination. Best results require immediate a-Si:H deposition and an abrupt and flat interface to the c-Si substrate. We obtain record 16.9% and 14.8% efficiencies on p-type planar float-zone (FZ) and Czochralski (CZ) silicon substrates, respectively, with HWCVD a-Si:H(n) emitters and Al-BSF contacts. Initial efforts with p-type HWCVD Si thin films as the BSF have yielded 12.5% efficiency on p-type CZ-Si.

1. Objectives

The a-Si:H/c-Si heterojunction (SHJ) solar cell [1,2] solves problems of high-temperature (>600°C) device processing, because a-Si:H deposited below 250°C can be used as the junction emitter and the back-contact BSF. The minority-carrier lifetime of a c-Si wafer is strongly affected by its thermal history, because of various defect-impurity mechanisms such as H-O centers, B-O complexes, thermal donors, and metal-dopant pairs. Commonly used lifetime enhancement techniques like P-gettering and H-passivation from SiN_x:H imposes difficult constraints on the temperature sequences used in the other silicon photovoltaic device processing steps. With the current industry trend toward thinner wafers or ribbons, wafer bowing caused by high-temperature metal back-contact processes is also a problem. If device-quality poly-Si thin-films on inexpensive, low-temperature substrates are achieved, low-temperature device processing will be essential. Our immediate goal is to extend to other materials and techniques the successes SHJ technology has enjoyed through plasma-enhanced chemical vapor deposition (PECVD) of a-Si:H on n-type c-Si substrates [3].

2. Technical Approach

We use HWCVD to deposit low-temperature hydrogenated silicon thin films as the emitter and BSF layers on p-type c-Si wafers. High-resolution transmission electron microscopy (HRTEM) is a key post-deposition diagnostic tool and real-time spectroscopic ellipsometry (RTSE) [4] is employed to monitor thin-film properties such as crystallinity, thickness, and surface roughness during deposition. HWCVD could prove superior to the commonly used PECVD for SHJ solar cells because of simplicity of the system, reduced ion bombardment, low powder formation, and high densities of atomic hydrogen (H) generation that may passivate the wafer interface region. The device fabrication process is detailed elsewhere [5].

3. Results and Accomplishments

The crystallinity of the deposited Si layer is found to be very sensitive to the deposition temperature and crystal orientation of the substrate. Crystallinity, in turn, affects an SHJ solar cell’s performance dramatically. In one set of experiments, RTSE clearly indicates epitaxial growth up to 30 nm in thickness on a (100) substrate at 200°C. On a (111) substrate at the same temperature, however, RTSE shows the film to be essentially a-Si as soon as the deposition starts. When the substrate temperature is higher, epitaxial growth can also be observed on (111) substrates. In Fig. 1, one can see that epitaxy persists for ~15 nm at 375°C on a (111) wafer, encompassing the i-layer (5 nm) and extending well into the n-layer. As a result, the open-circuit voltage (V_oc) of this device is only 487 mV. When we lower the substrate temperature to 100°C for both the i- and n-layer deposition, abrupt amorphous silicon growth is obtained, even on a (100) wafer, and a V_oc greater than 620 mV is obtained. Due to this tendency to grow epitaxial Si at higher HWCVD temperatures, V_oc decreases with increasing emitter deposition temperature. Figure 2 illustrates V_oc as a function of the i- and n-layer deposition temperatures (same for both layers) for 1.0 and 0.4 cm (111) substrates.

![Cross-sectional HRTEM image of Si deposition on a (111) wafer at 375°C. Line shows the wafer surface.](image1)

![V_oc vs. the i- and n-layer T.](image2)
The best voltage is obtained at substrate temperatures of 100º to 150ºC. When an epitaxial film grows through the intrinsic layer and into the doped layer, V_{oc} is limited to 600 mV or lower, depending on the a-Si/c-Si interface roughness and quality of the epitaxy [6]. With carefully chosen conditions to avoid epitaxial growth, we have achieved V_{oc} values as high as 640 mV on p-type CZ-Si.

Using the optimized material for the a-Si:H emitter and Al-BSF, we consistently obtain high-performance SHJ devices on untextured substrates, as shown in Table 1. One of the solar cells (16C) was independently verified by NREL’s Measurements & Characterization Division to have 16.9% efficiency (Fig. 3), the highest ever reported for a planar SHJ cell. Table 1 suggests slightly higher efficiencies due to calibration and spectral differences.

Table 1. Performance of a 1-cm² double-sided, planar SHJ solar cell on a (100) CZ-Si(p) wafer (XT-10 solar simulator)

<table>
<thead>
<tr>
<th>ID</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA/cm²)</th>
<th>F.F. (%)</th>
<th>Eff. (%)</th>
<th>Substrate (planar surface)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16B</td>
<td>0.640</td>
<td>33.55</td>
<td>79.4</td>
<td>17.1</td>
<td>FZ (100) p 1.0 -cm</td>
</tr>
<tr>
<td>16C</td>
<td>0.644</td>
<td>33.70</td>
<td>78.5</td>
<td>17.0</td>
<td>FZ (100) p 1.0 -cm</td>
</tr>
<tr>
<td>19A</td>
<td>0.638</td>
<td>33.37</td>
<td>78.6</td>
<td>16.7</td>
<td>FZ (100) p 1.0 -cm</td>
</tr>
<tr>
<td>19B</td>
<td>0.639</td>
<td>33.10</td>
<td>76.5</td>
<td>16.2</td>
<td>FZ (100) p 1.0 -cm</td>
</tr>
<tr>
<td>20B</td>
<td>0.639</td>
<td>33.55</td>
<td>78.9</td>
<td>16.9</td>
<td>FZ (100) p 1.0 -cm</td>
</tr>
<tr>
<td>59A</td>
<td>0.641</td>
<td>32.56</td>
<td>78.5</td>
<td>16.4</td>
<td>FZ (100) p 0.6 -cm</td>
</tr>
<tr>
<td>59B</td>
<td>0.644</td>
<td>32.72</td>
<td>79.9</td>
<td>16.8</td>
<td>FZ (100) p 0.6 -cm</td>
</tr>
<tr>
<td>59C</td>
<td>0.646</td>
<td>32.90</td>
<td>79.7</td>
<td>16.9</td>
<td>FZ (100) p 0.6 -cm</td>
</tr>
<tr>
<td>28B</td>
<td>0.612</td>
<td>30.87</td>
<td>78.3</td>
<td>14.8</td>
<td>CZ (100) p 1.2 -cm</td>
</tr>
</tbody>
</table>

4. Conclusions

Effective passivation for both emitter and BSF layers can be obtained with immediate a-Si:H deposition and an abrupt and flat interface to the crystalline silicon (c-Si) substrate. This is accomplished by low-temperature deposition (<150ºC) of the thin silicon layers. A record efficiency of 16.9% for planar SHJ solar cells is achieved using screen-printed Al-BSF on untextured FZ-Si. Good performance (12.5%) is also achieved by a double-sided heterojunction structure on p-type CZ-Si for the first time. We expect still better performance when we incorporate high-efficiency features such as surface texturing and double-layer antireflection coating, and we continue to improve the heterojunction BSF.

ACKNOWLEDGEMENTS

The authors would like to thank Charles Teplin, Yueqin Xu, Scott Ward, Anna Duda, Richard Crandall, and Pauls Stradins, for their valuable technical assistance and discussions. This work is supported by the U.S. DOE under Contract #DE-AC36-99G010337.

REFERENCES

4. TITLE AND SUBTITLE

Hydrogenated Amorphous Silicon Emitter and Back-Surface-Field Contacts for Crystalline Silicon Solar Cells

15. SUBJECT TERMS

PV; hydrogenate; amorphous silicon (a-Si:H); back-surface-field (BSF); hot-wire chemical vapor deposition (HWCVD); heterojunction solar cells; p-type; crystalline silicon wafers; thin films;

16. SECURITY CLASSIFICATION OF:

a. REPORT Unclassified

 b. ABSTRACT Unclassified

 c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT

UL

18. NUMBER OF PAGES

F1147-E(12/2004)