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Executive Summary 
Introduction 
Although most buildings have some form of thermal coupling to the ground, there is normally 
very little thought put into the consequences of this thermal connection. Today, a well-built 
house is so energy efficient above ground that the ground-coupled heat losses can account for 
30% to 50% of the total heat loss, showing the importance of a detailed analysis of ground-
coupled heat transfer. Despite the potential magnitude of this heat transfer term, the thermal 
modeling is often over simplified. Ground-coupled heat transfer calculations in building-energy-
simulation programs are usually one-dimensional, with corrections from the results of detailed 
numerical analysis to approximate the two- and three-dimensional effects. This approach can 
produce reasonable results by a knowledgeable user with a building similar to the cases 
examined in the original detailed numerical analysis. However, predictions between models can 
vary by a factor of more than two. 

An important factor in soil heat transfer that is often over looked is the effect of moisture, which 
can vary the effective thermal conductivity by a factor of ten. The objective of this research was 
to investigate the ground-coupled heat and moisture transfer from buildings, and to develop 
results and tools to improve energy simulation of ground-coupled heat transfer. 

Approach 
A two-dimensional, finite-element, heat-and-moisture transfer computer program and a 
companion two-dimensional heat-transfer computer program were developed to study the 
ground-coupled heat transfer from buildings. Soil thermal conductivity is a strong function of the 
soil moisture; therefore, accurate analysis of the ground-coupled heat transfer requires 
knowledge of the soil’s moisture content. The moisture-transfer model developed in this work is 
based on a mechanistic approach with temperature and matric potential as the independent 
variables. The model includes a detailed treatment of the ground-surface heat and moisture 
balances and includes a simple model for soil freezing. The finite element formulation uses the 
Galerkin weighted residual method. The nonlinear equations are solved using a modified Picard 
iteration technique. 

Results 
We investigated the effects of moisture added to the ground surface and the effects of water-table 
depth on the heat transfer from a slab-on-grade and a basement. The effect of moisture added to 
the surface is largest in the summer and larger for uninsulated floors and basements. Basement 
walls are sensitive to the conditions at the surface and are the most affected by surface moisture. 
Basement floors are relatively unaffected by short-term variations at the surface, but they are 
closely tied with the deep ground conditions, such as groundwater. 

Comparing annual simulations from the heat-and-moisture-transfer model and the heat-transfer 
model produced agreeable results when an appropriate value for soil thermal conductivity and 
evapotranspiration were chosen. Using seasonal values of soil thermal conductivity for heat-
conduction models can distort the daily results even though the annual results may appear to be 
correct. 
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Chapter 1: Introduction 
 
1.1. Background 

Although most buildings have some form of thermal coupling to the ground, there is normally 
very little thought put into the consequences of this thermal connection. There are numerous 
examples throughout history of intelligent use of the earth to moderate the daily and seasonal 
temperature swings in buildings. The cliff dwellings at Mesa Verde National Park are one of the 
best-known examples in the United States. Other examples include houses burrowed into the 
sides of mountains in Tunisia (Cole 1981), multiple family houses carved into rock in Turkey 
(Flint 1981), and buildings cooled with air drawn through tunnels in Italy (Fanchiotti and Scudo 
1981). While ground coupling provided relief in these cases, the indoor climate was surely 
uncomfortable by today’s standards. 

For most buildings in the United States today, the earth acts as a constant heat sink—slowly and 
constantly absorbing heat from buildings. It was estimated that in the early 1970s, earth-contact 
heat losses accounted for approximately 10% of the annual heat losses of the average home in 
the US (Labs et al. 1988). Rising energy prices in the 1970s forced an increase in conservation, 
and houses were built to be more energy efficient by reducing the infiltration, adding more 
insulation, and installing better windows. Today, a well-built house is so energy efficient above 
ground that the ground-coupled heat losses can account for 30 to 50% of the total heat loss 
(calculations by the author, Claesson and Hagentoft 1991a, and Labs et al. 1988), showing the 
importance of a detailed analysis of ground-coupled heat transfer. 

The increased energy costs in the 1970s also spurred developments in the analysis of the energy 
use in buildings, and many building-energy-simulation programs were created in the 1970s and 
1980s. Again, most of the effort was directed towards the aboveground portion of the building. 
Design analysis of ground-coupled heat transfer has mainly been confined to using correlation-
based methods such as those found in the ASHRAE Handbook of Fundamentals (1997). Ground-
coupled heat transfer calculations in building-energy-simulation programs are usually one-
dimensional, with corrections from the results of detailed numerical analysis to approximate the 
two- and three-dimensional effects. This approach can produce reasonable results by a 
knowledgeable user with a building similar to the cases examined in the original detailed 
numerical analysis.  

The use of detailed numerical analysis of ground-coupled heat transfer has been limited to a few 
researchers and rarely applied outside of their work. The main reason for the limited use is that 
the computation time required for three-dimensional numerical solutions is much greater than 
that required for analyzing the above ground portion of the building. As the speed of computers 
continues to rise (and the price drops), using detailed analysis of ground-coupled heat transfer 
becomes more feasible.  

The original objective of this research was to develop two- and three-dimensional heat-
conduction models suitable for use with hourly building-energy-simulation programs. In the 
early stages of the project, it became clear that there was a real need to study the coupled heat-
and moisture transfer in soils around buildings. Soil heat and moisture transfer is tightly coupled, 
and soil thermal properties are strong functions of the moisture content. Therefore, accurate 
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knowledge of soil heat transfer must include moisture transfer analysis. Soil Physicists, 
Agricultural Engineers, and Civil Engineers have studied soil heat and moisture transfer for 
many years and have had detailed solutions since the 1950s (Philip and de Vries 1957). A 
detailed numerical analysis of the heat and moisture transfer in soils next to buildings has only 
been applied in a limited case (Shen 1986). This is because the problem is very complex, and the 
computing power needed to solve the coupled heat-and-moisture transfer equations is at least 
two orders of magnitude greater than that needed to solve the heat-conduction equation alone. 
So, why go to the trouble of developing a detailed model? With a detailed model, the inputs can 
be closely examined to determine which ones are important and need closer attention. A detailed 
model can also be used to create a benchmark for simple models and bound the solution between 
extremes. 

Therefore, the focus of this research evolved into analyzing the coupled heat and moisture 
transfer in soils to determine the important terms and parameters. To accomplish this, a two-
dimensional, ground-coupled, heat-and-moisture transfer model and a two-dimensional, ground-
coupled heat-transfer model were created. The models followed a mechanistic approach, using 
finite element analysis to solve the governing equations. After validating and verifying the 
models, they were used to study the effects of moisture and freezing on the ground-coupled heat 
transfer from slab floors and basements. 

1.2. Organization of Report 

This report begins by briefly reviewing the history of building ground-coupled heat transfer 
research and analysis in Chapter 2. Chapter 3 presents an overview of the physics of heat and 
moisture transfer in soils and the methods used to determine the soil thermal and hydraulic 
properties. The development of the heat and moisture transfer model is presented in Chapter 4, 
along with the surface moisture and energy balances and the numerical solution method. Testing, 
verification, and validation of the model are covered in Chapter 5. Application of the model to 
the heat transfer from a slab-on-grade floor and basement geometry are included in Chapter 6. 
Appendices A through D include a detailed derivation of the governing equations, the finite 
element formulation, correlations used for the thermal and hydraulic properties, and a 
comparison of correlations for the convective heat-transfer coefficient for the ground surface. 
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Chapter 2: Literature Review 
 
2.1. Introduction 

There have been many approaches to analyzing ground-coupled heat transfer from buildings, 
including steady-state analytic models, correlation-based models, transient analytic models, 
combined analytic and numeric models, and full numeric models. Each of these approaches can 
produce useful information if they are used correctly within the bounds of the simplifying 
assumptions, but they can produce extremely inaccurate results if used improperly (Bahnfleth 
1989 and MacDonald et al. 1985). A summary of some of these models is presented here. 
Extensive reviews have also been completed by Claridge (1988), Labs (1989), Adjali et al. 
(1998a), and Krarti (1999). 

2.2. Experimental Work in Building Ground-Coupled Heat Transfer 

Some of the earliest detailed heat transfer measurements from a basement were performed by 
Houghten et al. (1942). They measured soil temperatures and wall and floor heat fluxes for a 
buried structure over a period of one year. These measurements proved that the simple 
conduction calculations used at that time vastly over-predicted the heat loss. Bareither et al. 
(1948) measured temperatures and heat loss from nine slab-on-grade constructions and showed 
the existence of two-dimensional flow for a 3-foot strip along the edge and one-dimensional flow 
for the central region of the floor. They also derived two methods to estimate the heat loss, q (W) 
from slab-on-grade floors based on heat-loss factors, F1 and F2. 

)AA(2)TT(PFq perimetertotalflooroutin1 −+−=  (2.1) 

)TT(PFq outin2 −=  (2.2) 

The perimeter of the floor is P (m), the indoor-outdoor air temperature difference is (Tin – Tout) 
(C), and Aperimeter (m2) is the floor area of a 3-foot border along the exposed edge. Bareither et al. 
believed that Eq. (2.1) would provide better estimates of floor heat loss for all constructions, 
especially for floors with an A/P ratio greater than 12 m. The values for the F2 heat loss factor 
from this research were used in the ASHRAE Handbook of Fundamentals for many years until 
they were replaced by numerically derived values. 

For his Ph.D. thesis, Shipp (1979) compiled experimental data on a large, earth-sheltered 
building on the University of Minnesota campus. Wall heat fluxes, soil temperatures, and 
moisture contents were measured to depths of 9.3 m in grass-covered, asphalt-covered, and 
concrete-covered areas around the building. On the north side of the building, three different soil 
types were used as backfill. The ground surface conditions were determined to be the most 
important factor controlling the heat transfer between the building and the ground. The boundary 
conditions at the surface affect not only the heat flow into the ground but also the moisture 
content of the soil, which affects the soil thermal properties. This suggests that a detailed 
treatment of the ground surface moisture and energy balances is important. 

Bligh et al. (1982) and Bligh and Knoth (1983) completed detailed measurements of the soil and 
structure temperatures, heat flows, energy use, and indoor and outdoor conditions for an earth-
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sheltered house near Boston, Massachusetts. They demonstrated that the heat-flow paths from 
the buried walls change from the surface in the winter to the deep ground in the spring. They also 
showed that ground surface temperatures under damp grass were as much as 20°C cooler than 
the temperatures of bare ground, showing the importance of ground cover. 

Yoshino et al. (1992) completed a 5-year study of the thermal performance of a semi-
underground test house in Sendai, Japan. The house was divided into identical sides, C and D, 
except that D also included horizontal insulation 0.3 m beneath the ground surface around the 
perimeter extending out 1.35 m from the building. They measured soil and inside air 
temperatures and heating energy consumption for the two sides. The side with horizontal 
insulation had slightly lower temperature variations and slightly lower heating loads. The use of 
horizontal insulation was only moderately effective in this case. 

Trethowen and Delsante (1998) measured heat flows, temperatures, and soil thermal 
conductivities for two houses over a 4-year period in New Zealand. Both houses used 
uninsulated slab-on-grade construction and were occupied throughout the experiment. The 
water-table depth for the houses varied between 0.4 m and 1.0 m and maintained a high soil 
moisture content throughout the year. One significant result of the work is that it took 
approximately 2 years for the perimeter regions to reach a quasi-steady state and 3 years for the 
core region to reach a quasi-steady state. In addition, the presence of the houses did not seem to 
affect the depths of the water tables. Trethowen and Delsante calculated whole-floor R-values 
and compared these with calculations from simple methods from the ASHRAE (1997) and 
CIBSE Handbooks (1986), Delsante (1990), and Davies (1993). The calculated values were off 
by as much as + 50% for one house and -25% for the other house. The disagreements in these 
comparisons were caused by underestimating the soil thermal conductivity and by not including 
the width of the exterior wall. They estimate that approximately 10% of the floor heat loss could 
be through vertical conduction to the masonry exterior wall above the floor. 

Thomas and Rees (1999) completed a one-and-a-half-year study of floor heat flows, soil 
temperature, and moisture levels of a new building at the Cardiff School of Engineering. The 
experiments showed that a lightweight concrete floor performed better thermally, with an overall 
thermal transmittance of 0.20 W/m2·K, when compared to 0.26 W/m2 K for a normal-weight 
concrete floor. The measurements also showed that, for an uninsulated floor, approximately 60% 
of the winter floor heat loss to the ground occurs in a 1.5-m-wide strip around the perimeter of 
the building. Soil moisture levels in the first 2 m beneath the slab were relatively constant, but a 
rising water table did increase the moisture at a depth of 3 m. The soil moisture levels measured 
1 m outside of the building foundation showed significant seasonal variation, suggesting strong 
effects of coupled heat and moisture transfer. 

2.3. Analytic Solutions to Ground-Coupled Heat Transfer 

The first analytic two-dimensional model of ground-heat transfer to be widely recognized was 
developed by Macey (1949), who considered the problem of an infinitely long floor with 
correction factors for rectangular floors and wall thickness. This method is still used as the basis 
for heat-loss calculations in the CIBSE Guide (1986). The first well-known transient solution 
method was developed by Lachenbruch (1957), who solved the differential heat-conduction 
equation using Green's functions. Lachenbruch used this method to study the three-dimensional 
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heat conduction in permafrost beneath heated buildings and found that it takes 3 years for the 
temperature field to reach an annual steady periodic behavior. This solution method was later 
used as the basis of a computer program to calculate monthly heat loss values and ground 
temperature data used by the building energy simulation programs DOE-2 and BLAST (Kusuda 
et al. 1982 and Kusuda and Bean 1984). Both of these models assume uniform and constant 
thermal properties. 

Fourier series solutions to the ground-heat-conduction equation were developed by Muncey and 
Spencer (1978), Shen and Ramsey (1983), and Delsante and Stokes (1983). Muncey and Spencer 
studied the shape of the slab floor and found that there is a linear relationship between a 
resistance parameter defined as thermal resistance of a slab shape/thermal resistance of a square 
of equal perimeter, and an area parameter defined as area/(perimeter/4)2. Shen and Ramsey 
developed a transient thermal-analysis program for earth-sheltered buildings based on their 
solution method. Delsante was able to derive a closed-form solution to the two-dimensional heat 
conduction problem and an approximate solution to the three-dimensional problem. This model 
was later extended to approximate the heat loss through core and perimeter regions of insulated 
floors (Delsante 1988 and 1989), which was shown to compare well with measured data 
(Delsante 1990). 

Claesson and Hagentoft (1991a and 1991b) applied superposition and dimensional analysis to 
combine numerical and analytical solutions of the problem of heat loss from slab-on-grade 
floors. The heat-conduction equation is solved for a steady state problem, for a periodic outdoor 
temperature, and for a unit step in outdoor temperature. The three solutions are combined by 
superposition to obtain the final solutions for specific problems. They discovered that the effects 
of groundwater are small unless the water level is high, that the effects of freezing are small, and 
that the insulating effects of snow cover should be considered. Hagentoft (1996a and 1996b) 
later investigated using a constant-temperature water table as a lower boundary condition. The 
effect of the water table depends on the heat-conduction ratio through the soil to the convection 
of heat carried away by the groundwater. 

Krarti uses a clever approach called the Interzone Temperature Profile Estimation (ITPE) 
technique, which combines numerical and analytical approaches to solve the heat-conduction 
problem (Krarti et al. 1988a, 1988b, 1990, and 1994). If steady-periodic conditions are assumed, 
the transient heat-conduction equation can be transformed into a time-independent Helmholtz-
type equation. The temperature is represented by a mean value, amplitude, frequency, and a 
phase shift. The ITPE technique divides the problem domain into zones, where the heat-
conduction equation can be easily solved, and requires estimates of the temperature profile along 
the surfaces between the zones. Two- and three-dimensional models were developed that 
compare favorably with the results of Mitalas and Bahnfleth (Krarti 1995b) in predicting annual 
heat-loss values. One important conclusion from this work is the fact that the heat transfer from a 
slab floor can be divided into one-, two-, and three-dimensional regions (Krarti 1990). A 
frequency-response analysis of this problem by Krarti, Claridge, and Kreider (1995a) showed 
that uninsulated slab floors and basement walls respond to ground-surface temperature variations 
in a few hours and insulated floors and walls respond to temperature variations in a few days. 
Limitations of this model include the need to know (or estimate) the temperature profiles 
between zones, constant soil properties, and a simplified treatment of the ground-surface 
boundary condition. 
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2.4. Design Calculation Methods 

There are many simple methods available to determine the seasonal or annual ground-coupled 
heat loss from buildings. Most of these methods are based on the results of massive amounts of 
numerical simulations. While they can provide guidelines, the potential errors are large. 
MacDonald et al. (1985) found that the predictions between models could vary by more than a 
factor of two. 

Probably the most widely used methods are presented in the ASHRAE Handbook of 
Fundamentals (1997) for slab-on-grade floors and basements. The heat conduction from a slab-
on-grade floor is approximated as a function of a heat-loss coefficient, F2, the slab perimeter, and 
the temperature difference between the indoor and outdoor air as given in Eq. (2.2). The heat-
loss coefficients were determined using the results of a two-dimensional, finite-element program 
for four foundation types with and without insulation in three climates (Wang 1979). As pointed 
out by Bahnfleth (1989), this method neglects the heat transfer from the core region of the floor, 
which can be important for medium or large buildings. The method for basements, based on the 
work of Latta and Boileau (1969), assumes circular heat-conduction paths from the basement 
walls and floor to the ground surface. The walls are divided into strips at different depths with 
effective path lengths through the soil to the ground surface. This method does not take into 
account the vertical heat flow in the walls, which can be dramatically altered by insulation 
configurations and surface conditions. In addition, this model does not directly account for heat 
transfer to the deep ground, which can be significant when the surface is warm or when there is 
high groundwater. Both of these methods were based on calculations that assumed a single soil 
thermal conductivity and, they are limited in the geometries that can be modeled.  

Another well-known method derived by Mitalas (1982 and 1987) is based on the results of 
hundreds of two- and three-dimensional simulations with a finite element method (FEM) code. 
This method uses shape factors called Basement Heat Loss Factors (BHLF) to estimate the 
monthly heat loss values for various geometries, insulation configurations, and soil thermal 
properties. Corner allowance factors for the three-dimensional corner effects were derived from 
the three-dimensional model. This simplified method is limited to a few specified geometries, 
insulation configurations, soil thermal conductivities, and heating degree days. In addition, no 
information is given on the ground surface boundary conditions used in the numerical 
simulations. Other methods are presented by Yard et al. (1984), the CIBSE guide (1986), 
Bahnfleth (1989), and Krarti and Choi (1996). 

Changes were made to the DOE-2 building energy simulation program to improve its ground-
coupled heat transfer calculations (Huang et al. 1988 and Shen et al. 1988). Shen et al. completed 
an annual numerical analysis of the ground-coupled heat transfer for 88 configurations of deep 
basements, shallow basements, crawl spaces, and slabs-on-grade in 13 U.S. cities. Using 
superposition of a steady-state solution and a periodic solution, they showed that the periodic 
solution could be completed once and then scaled to any climate. Many simplifying assumptions 
had to be made, such as neglecting the solar input and using a fixed heat-transfer coefficient at 
the ground surface. Huang et al. combined these results with DOE-2.1C to complete whole-
building simulations and to provide guidance on insulation placement and amounts, which were 
published in the Builder’s Foundation Handbook (Carmody et al. 1991). Winkelmann (1998) 
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used these results to develop a simplified method of modeling underground surfaces using DOE-
2.1E. 

2.5. Numerical Models of Building Ground-Coupled Heat Transfer 

Using fully numeric solutions has been limited mainly to the researchers who developed them to 
perform parametric analysis and to develop correlation-based methods (e.g., the Mitalas 
method). The main reason for their limited use is the large amount of computer time and memory 
required to run them; they also tend to be complex programs. However, personal computers are 
now becoming fast enough, and the speed will continue to rise rapidly, making full numerical 
models practical. Most of the methods use either the finite-difference method (FDM) or the FEM 
method.  

One of the earliest models was a three-dimensional FDM developed by Kusuda and Achenbach 
(1963). The program was used to study the temperature and humidity conditions in fallout 
shelters. One significant feature of this work is that they used different values of soil thermal 
conductivity for summer and winter to account for the seasonal changes in soil moisture content. 

Wang (1979) developed a two-dimensional FEM model, which, as mentioned above, is the basis 
for the present F2 coefficients in the ASHRAE Handbook of Fundamentals (1997). This program 
includes the effects of the soil freezing and thawing. The results were reported as the heat loss 
per linear foot of the floor cross-section and not for the entire floor. The translation of these 
results to real floor geometry was not reported.  

Speltz (1980) developed a complete program for the energy simulation of underground structures 
that includes a two-dimensional FEM routine for ground-coupled heat transfer. The most notable 
feature of this work is the detailed energy balance for the ground-surface-boundary condition. 
The model includes short- and long-wave radiation exchange, conduction to the ground, 
convection, and evapotranspiration.  

One of the most thorough works in this area was completed by Mitalas (1982, 1987), who 
completed hundreds of computer runs for slab-on-grade floors, shallow basements, and deep 
basements using two- and three-dimensional FEM codes. Mitalas noted that the heat loss can be 
significantly affected by groundwater, changes in soil thermal conductivity caused by moisture 
and temperature variation, and variations in ground surface temperature caused by solar 
radiation, adjacent buildings, and snow cover. This work was used as the basis for another two-
dimensional program called BASECALC that simulates the three-dimensional heat transfer at 
the corners with the corner correction method (Beausoleil-Morrison et al. 1995). The corner 
factor is defined as 

zonecentralzonecentral

zonescornerzonescorner
C Pq

Pq
F =  (2.3) 

The heat loss is q and the zone perimeter is P. A total of 1512 corner factors were determined for 
different combinations of the insulation placement, insulation resistance, basement depth, 
basement width, soil thermal conductivity, and water table depth. The heat loss for the central 
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zone is calculated by BASECALC using two-dimensional calculations. The total heat loss is then 
determined by 
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Bligh and Willard (1985) used the FEM thermal analysis program ADINAT to study the thermal 
performance of earth-sheltered buildings. This model used hourly weather data and included the 
effects of snow cover, cloud cover, and soil moisture phase changes from liquid to vapor and 
from liquid to solid. The most significant result of this work is that the heat loss varied nearly 
linearly with soil conductivity. Also, the solution took nearly 3 years to reach a quasi-steady state 
when initialized at zero and only a month when using a more realistic initialization from the 
results of a 3-year run, confirming the results of Lachenbruch. 

Walton (1987) investigated the possibility of using two-dimensional calculations to approximate 
the three-dimensional heat flow to reduce the computation time. He transformed rectangular-
shaped floors into rectangles with round ends, keeping the area and the perimeter the same as 
shown in Figure 2.1. The heat transfer is then calculated using two-dimensional Cartesian 
coordinates for the center section and two-dimensional cylindrical coordinates for the end 
sections. This method, called the “rounded rectangle” or RR method, estimates the steady-state 
heat transfer from various simple basement and slab-on-grade floor geometries to within 1.5% 
and 1.7% of the results from the three-dimensional model. Year-long transient calculations also 
produced similar results. This shows the possibility of reducing the computation time by using 
two-dimensional calculations; however, the RR technique is limited to simple slab-on-grade 
geometries where axis-symmetric conditions exist. 
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Figure 2.1. Geometry transformation used by Walton to reduce the three-
dimensional problem to a two-dimensional problem. 

Another comprehensive model is presented by Bahnfleth (1989) and Bahnfleth and Pedersen 
(1990). He developed a detailed three-dimensional FDM model for heat conduction from slab-
on-grade floors. Significant features of this model include the detailed ground-surface energy 
balance that handles everything the Speltz model does plus the ground-shading effects. Bahnfleth 
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performed many parametric runs to study the dominant influences on ground-heat loss. He 
determined that the primary factors in determining the heat loss are the weather conditions 
affecting the ground-surface temperatures, the floor-area-to-perimeter ratio, soil thermal 
conductivity, and the insulation configuration. He showed that when the annual mean heat loss, 
q, is plotted against the floor area-to-perimeter ratio, A/P, the data can be approximated by 

d)PA(cq =  (2.5) 

The parameters c and d are functions of the annual average indoor-outdoor temperature 
difference, soil properties, domain geometry, foundation design, and other factors. A parametric 
study of soil thermal conductivity and diffusivity showed that a factor of four increase in 
conductivity produced a three-fold increase in annual mean heat loss, while the diffusivity had 
very little effect on the mean or periodic heat loss. The ground-surface temperature was also 
shown to have a large influence on heat loss; therefore, it is not surprising that evapotranspiration 
and shading can significantly affect the ground-heat transfer. Runs with potential (maximum) 
evapotranspiration reduced the annual mean heat loss by 18.7% in Minneapolis and by 170% in 
Phoenix. The real effect of this will be less because the maximum evapotranspiration rarely 
occurs. The shading of the building on the ground decreased the annual mean heat loss by 27% 
in Phoenix.  

Despite the thoroughness of the model, there are some weaknesses. One shortcoming is the 
assumption of constant soil thermal properties, which does not allow for different soil layers, 
moisture effects, or freezing and thawing. Another limitation is that partial insulation of the slab 
and footing walls, which are common methods of construction, cannot be modeled. Bahnfleth et 
al. (1998) extended this work to a three-dimensional model for the heat loss from basements. 
This new model is more flexible with the insulation configurations, and the temperature of an 
unconditioned basement can be calculated to simulate interior conditions more accurately. 

One glaring omission from the area of building ground-coupled heat transfer models is the lack 
of validation with experimental data. This is because of the size, complexity, and length of time 
required to monitor ground-coupled heat and moisture transfer. Rees et al. (1995) and Rees and 
Thomas (1997) compared the results of an FEM program with long-term experimental data. 
Some of the comparisons are very good, while others are not. Rees attributes this to the 
estimation of the soil properties. It could also be caused by the approximation of the surface 
boundary conditions and by the fact that the soil properties were kept constant. 

Adjali et al. (1998b) compared results from a finite volume ground heat transfer model added to 
the building energy simulation code, APACHE, with experimental data on a partial underground 
test room at the University of Minnesota. The results compared favorably for the summer, but 
not very well in the winter. They concluded that neglecting the effects of snow cover and rain 
can significantly affect the predicted temperatures. A sensitivity study showed that the soil 
thermal conductivity is the most important parameter and that the simulated results are more 
sensitive in the winter than the summer. 

The only researcher found by the author to model the coupled heat and moisture transfer in soils 
around buildings was Shen (1986), who developed a two-dimensional fully implicit FDM 
program to analyze soil heat and moisture transfer. Shen validated the model well with published 
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analytic solutions and with experimental data from heat and moisture transfer in a 1-m cylinder 
of Mississippi River sand. This model was then used to study the effects of rain on the heat 
transfer from a basement wall with both a clay soil and a sandy soil (Shen 1986; Shen and 
Ramsey 1988). The simulations were completed with the heat and moisture equations coupled 
and uncoupled. In the uncoupled simulation, the heat transfer by moisture movement was not 
considered; however, the soil’s thermal properties were calculated as a function of the moisture 
content from the moisture transfer solution. The sandy soil showed a 9% increase in heat transfer 
for winter conditions and a 40% increase for summer conditions when the equations were 
coupled. The differences were much smaller for the clay soil. These results must be regarded 
with care because uncoupling the equations increases the thermal resistance since the heat flow 
by moisture transfer is not included. The main effect of moisture on the heat transfer in soils is 
on the thermal conductivity, which was not tested by this case.  

2.6. Effects of Ground Cover 

Gold (1967) measured the ground temperatures under two parking lots. One was cleared of snow 
in the winter, and the other was a grass-covered area. He estimated that for the grass-covered 
area in the summer, about 48% of the net solar radiation was dissipated by evapotranspiration, 
42% by long-wave radiation, 7% by convection, and 3% by conduction into the ground. For the 
parking lot areas, the net solar radiation was split between convection and long-wave radiation 
losses with about 50% for each. Apparently, the conduction to the ground was very small. The 
snow-covered parking lot maintained an average surface temperature approximately 10°C 
warmer than the coldest monthly average air temperature.  

Kusuda (1975) investigated the effect of ground surface cover by measuring the temperatures 
under black asphalt, asphalt painted white, bare dirt, short grass, and long grass. He found that 
the average monthly temperatures near the surface under the black asphalt were about 15°F 
hotter than under the long grass, even at a depth of one foot. In the winter, all of the temperatures 
at one foot were similar. At a depth of 30 feet, the soil temperatures under the black asphalt were 
higher in the winter, but similar to the others in the summer.  

Gilpin and Wong (1976) discussed the “heat-valve” effect of snow cover. They argued that 
prolonged snow cover in the winter acts as an insulating layer and can raise the annual mean 
ground-surface temperatures. They also showed that a phase change in the ground amplifies this 
effect. 

2.7. Summary 

Ground-coupled heat transfer is an important term in a building’s energy balance; however, the 
tools for detailed analyses of the problem are not available. The most widely used analysis 
methods are quite crude and can easily produce inaccurate results. Most models are severely 
limited in the geometries, insulation configurations, boundary conditions, and the soil properties 
that can be analyzed. For a first approximation, these models can produce reasonable results; 
however, answers that are more accurate are difficult to come by. Questions such as the 
distribution of soil moisture around buildings, the interaction of the ground surface with the 
atmosphere, and the effects of phase change on ground-coupled heat transfer have not been 
answered with enough detail to provide good design advice. The behavior of heated floors and 
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basements is also not well understood. Using the ground for cooling in warm climates has not 
been mentioned, but is also a very important topic.  The aim of this research was to gain some 
insight into these issues and provide the necessary tools for further research. 
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Chapter 3: Review of Soil Physics 
 
3.1. Introduction 

One of the major difficulties in modeling heat-and-moisture transfer in soils is estimating the 
thermal and hydraulic properties. Soils consist of minerals, organic material, water (as vapor, 
liquid, and solid), solutes, air, and other gases, each of which affect the physical behavior of the 
soil. Soils are nonhomogeneous and nonisotropic, and many of the properties are strong 
functions of moisture content and, to a lesser degree, temperature. Measuring the properties in 
the field or in the lab is difficult, and the process of measuring can strongly affect the value 
obtained. Measured values are only valid for the conditions at the time of the measurement; 
therefore, correlations based on physical models and empirical observations of soil behavior are 
used to model soil behavior. The model for heat-and-moisture transfer developed in this work 
requires correlations for the thermal conductivity, soil water retention, and hydraulic 
conductivity. A brief introduction to the soil physics of these correlations and the effects of phase 
changes is presented in this chapter. 

Reasonable approximations of soil behavior depend strongly on the simplifying assumptions 
used. For the purposes of this work, soils are considered homogenous and isotropic within each 
defined soil type. The soil matrix is assumed nondeformable, and hysteresis of the properties is 
neglected, as are the effects of solutes. 

3.2. Heat Transfer Paths in Soil 

Heat transfer in soil occurs through many different paths, including conduction through the soil 
grains, liquid, and gases; latent heat transfer through evaporation-condensation cycles; sensible 
heat transfer by vapor and liquid diffusion and convection; and radiation in the gas-filled pores. 
The relative magnitudes of the heat-transfer terms depend on the soil composition, structure, 
temperature, and moisture content. Simply adding the heat-transfer terms is not strictly correct 
because they are not uniformly distributed throughout the soil. A simplified diagram of the main 
heat-transfer paths examined in this work is shown in Figure 3.1. 
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Figure 3.1. Simplified diagram of the major heat transfer paths in soil. 

Conduction through the solid soil particles is the dominant heat-transfer mode under most 
circumstances (de Vries 1958). The contact resistance between the soil grains is the limiting 
factor; therefore, anything that reduces this resistance increases the thermal conductivity. 
Increasing the dry density promotes better contact between soil grains, and adding colloidal clay 
particles to a coarse soil can reduce the contact resistance by filling in the voids as long as the 
larger grains are not pushed apart. Adding moisture to a dry soil forms liquid islands around the 
contact points, which provides another path for heat flow (Farouki 1981). When moisture levels 
approach saturation, the lower thermally conductive gases are replaced with higher thermally 
conductive moisture. 

In the gas-filled pores of unsaturated soils, liquid water evaporates on the warm side, absorbing 
the latent heat of vaporization and reducing the radius of the meniscus (dotted lines in Figure 
3.1). Diffusion occurs because of the vapor pressure gradient, and the vapor condenses on the 
other side of the pore, releasing the latent heat of vaporization and increasing the meniscus 
radius. The sensible heat carried by the vapor is negligible because of the vapor’s low volumetric 
heat capacity. At steady state, the imbalance in menisci radii induces capillary liquid flow 
between the soil grains to balance the vapor flow (Philip and de Vries 1957). This process is 
significant to the overall thermal conductivity because the effective thermal conductivity of the 
vapor distillation cycles is larger than the thermal conductivity of the gas-filled pores alone 
(deVries 1958).  

Forced convection arises from potential gradients. One example of forced convection in soils is 
the infiltration of liquid at the ground surface, which can be significant for a short time after a 
large rain or irrigation. This heat transfer mode is included in this model. Groundwater flow, 
which is usually parallel to the ground surface, affects the vertical heat transfer by entraining 
moisture and by dispersion effects. This is only significant in coarse sands and gravel (Farouki 
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1981) and is not considered in this analysis. The presence of groundwater does affect soil heat 
transfer by providing a large heat sink and a source of moisture, which can be adsorbed by the 
soil above. This effect is included in this analysis.  

The following three heat transfer modes are small for the soils and the conditions encountered in 
the ground around buildings. Free convection arising from temperature gradients is only 
significant in soils having particle sizes larger than 8 mm (Farouki 1981). Sensible heat transfer 
by vapor convection or diffusion is negligible because of the vapor’s low volumetric heat 
capacity. Radiation heat transfer contributes less than 1% of the total heat transfer in sands at 
normal atmospheric temperatures and is much less in finer-grained soils (Farouki 1981). 

3.3. Hydraulic and Thermal Properties of Soil  

3.3.1. Soil Moisture Retention 
The movement of water in soil is determined by the water’s relative potential energy state. Hillel 
(1998) defines soil water potential “as the difference in partial specific free energy between soil 
water and standard water.” Standard water is water at a free surface, which is exposed to 
atmospheric pressure at a specified height. Water in saturated soil under hydrostatic pressure 
greater than atmospheric pressure has a positive potential energy. Water in unsaturated soil is at 
pressures less than atmospheric and has a negative potential energy. To extract water from an 
unsaturated soil, the capillary and adsorptive forces holding on to the water must be overcome. 
The attractive force of the capillary and adsorptive actions of the soil matrix is called the soil 
matric potential. The total potential is assumed to be the gravitational and matric potentials as 
presented in Eq. (3.1), where z is taken as positive upwards. Osmotic potential arises from solute 
concentration gradients and is usually much smaller than the gravitational and matric potentials, 
and is neglected in this work. The potential is often expressed as an equivalent head of water 
and, therefore, has the dimension of length. 

z+ψ=Φ  (3.1) 

In the absence of osmotic forces, the matric potential can be used to determine the soil’s 
moisture content. The relationship between the matric potential and the soil moisture is shown 
graphically by the soil-moisture-retention curve (also called the soil water characteristic curve). 
Figure 3.2 shows an approximation of the soil-moisture-retention curve for loamy sand reported 
by Noborio et al. (1996) and Yolo light clay (Moore 1939). The flatness of the sandy soil curve 
shows that the moisture drains quickly and the steeper slope for the clay shows that this soil has a 
higher attraction to moisture.  
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Figure 3.2. Approximate soil moisture retention curves for a loamy sand 
(Noborio et al. 1996) and Yolo light clay (Moore 1939). 

The behavior of the soil moisture retention typically exhibits a hysteresis between wetting and 
drying. The process of drying a moist soil (desorption) takes more energy than is released during 
the wetting (adsorption) process; therefore, the drying curve is usually higher than the wetting 
curve (Case 1994). This hysteresis is not modeled in this work, and the soil moisture retention 
curves are based on the drying behavior because this was the measurement method used for the 
soils in this research.   

To simulate the soil moisture transfer in a soil, a continuous or piece-wise continuous correlation 
for the matric potential must be obtained. One of the most widely accepted methods for doing 
this is presented by van Genuchten (1980). The form of the correlation is 
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The degree of saturation is Θ; θr and θs are the residual and saturated water contents; α, m, and n 
are parameters set to fit the measured data; and m = 1 – 1/n.  Van Genuchten presents a graphical 
method of determining these parameters to fit the measured data. The values used for each of the 
soils modeled in this work are included in Appendix C.  
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3.3.2. Hydraulic Conductivity 
The flow of water through unsaturated soil can be approximated by Richards’ version of Darcy’s 
law relating the flow to the gradient of the hydraulic head or the total potential (Hillel 1998). The 
parameter relating the flow to the pressure gradient is the hydraulic conductivity, K (m/s).  

Φ∇ψ−= )(Ku l  (3.4) 

The hydraulic conductivity in unsaturated soil is a function of soil and fluid properties, moisture 
content, and temperature. The soil liquid is assumed to be relatively pure water; therefore, the 
effects of the liquid on the hydraulic conductivity are neglected. If measured data are known for 
the range of moisture contents under consideration, a good approximation can be fitted to the 
data by a least-squares technique (Haverkamp et al. 1977). If hydraulic conductivity values are 
not known over the range of moisture contents, a satisfactory approximation can be developed 
using the hydraulic conductivity at saturation and the same parameters as determined from the 
soil-moisture-retention curve using van Genuchten’s method (1980).  
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 (3.6) 

The hydraulic conductivity curves of a loamy sand (Norborio et al. 1996) and of Yolo light clay 
using van Genuchten’s method are shown in Figure 3.3. 

If only pore ice exists in partially frozen soil, the movement of the unfrozen water content can be 
approximated by a Darcy’s Law approach similar to that used in unfrozen soil (Kay and Perfect 
1988). The hydraulic conductivity of partially frozen soil is a function of the unfrozen water 
content, which is a function of the temperature (Hoekstra 1966 and Harlan 1973). Measurements 
show that the hydraulic conductivity falls from values in the range of 10-8 m/s to between 10-12 
m/s and 10-14 m/s over the temperature range from 0.0 to –1.0°C (Horiguchi and Miller 1983). 
Because no correlations for the hydraulic conductivity of frozen soil were found, it is assumed to 
follow the unfrozen relation using the unfrozen water content and corresponding matric 
potential. A small amount of water corresponding to the residual water content from the soil-
moisture-retention curve remains unfrozen below the freezing point, but is not allowed to move 
once the soil temperature is below 0.0°C.  
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Figure 3.3. Approximations of the hydraulic conductivities of a loamy sand 
(Noborio et al. 1996) and Yolo light clay (Moore 1939). 

3.3.3. Temperature Effects on Hydraulic Properties 
The correlations presented for the matric potential and the hydraulic conductivity are based on 
measurements taken in the lab at a constant temperature; however, soil temperatures in the field 
are constantly changing, which affects the values of these properties. This temperature effect is 
much smaller than that of moisture and is often neglected. For hydraulic conductivity, the 
viscous flow model of Miller and Miller (1956) points to a correction by the ratio of the 
kinematic viscosities of water at the reference temperature Tr and the actual temperature T.  This 
method is generally accepted to produce accurate results (Milly 1982 from Eagleson 1970). 
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A temperature correction for the matric potential relationship can be derived by noting that the 
equilibrium of the air-water interface in a soil pore requires (Milly 1982) 
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The harmonic mean radius is rc, and the surface tension of the liquid is σ. From this, a 
temperature correction can be formed as 

1.E-23

1.E-20

1.E-17

1.E-14

1.E-11

1.E-08

1.E-05

1.E-02

0.0 0.1 0.2 0.3 0.4 0.5
Volumetric Moisture Content

H
yd

ra
ul

ic
 C

on
du

ct
iv

ity
 (m

/s
)

Yolo Light Clay

Loamy Sand



 19 
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The density ratio is usually dropped from this equation. Using these temperature corrections 
from Eqs. (3.7) and (3.9) is often called the surface-tension viscous-flow (STVF) approach. 
Milly (1984 from Milly and Eagleson 1980) suggests another formulation for the matric potential 

)TT(C
r

re)T,()T,( −− ψθψ=θψ  (3.10) 

where 

θ
ψ ∂

ψ∂
ψ

=
T

1C  (3.11) 

is taken as a constant, Cψ = 0.0068 K-1.  

Another approach is the gain factor method from Nimmo and Miller (1986). The gain factor G 
for the matric potential relationship is defined as 

1)T()T(
1),T(),T(

)(G
r

r

−σσ
−θψθψ

=θψ  (3.12) 

This method requires knowledge of the matric potential at two temperatures to determine the 
gain factor. Giakoumakis and Tsakiris (1991) showed that the gain-factor method works better 
than the STVF method for fine-textured soils, but the STVF method works well for coarse-
textured soils.  

The temperature correction factors with Tr = 20.0°C for the STVF method and the Milly-
Eagleson method are shown in Figure 3.4. Notice that the surface-tension model with the density 
ratio is very similar to the value without the density ratio. Because the STVF model is the most 
widely used, it was chosen for this work. 
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Figure 3.4. Temperature correction factors for the matric potential and 
hydraulic conductivity correlations. 

3.3.4. Thermal Conductivity 
Soil thermal conductivity can be defined as “the rate at which heat energy flows across a unit 
area of soil due to a unit temperature gradient” (Farouki 1981). It is a function of the moisture 
content; temperature; and the size, shape, orientation, packing, and type of grains that make up 
the soil matrix. The moisture content has the largest effect; it can change the thermal 
conductivity by more than a factor of 10. For most ground-coupled heat transfer work, a fixed 
value of the thermal conductivity is assumed, which could lead to large errors. Some researchers 
have used seasonal values of thermal conductivity to account for changing moisture content 
(Kusuda and Achenbach 1963; McBride et al. 1979; Bligh and Willard 1985). The ASHRAE 
Handbook of Fundamentals (1997) suggests bounding the results with low and high values of 
thermal conductivities and presents ranges based on the work of Salomone and Marlowe (1989). 

There are several methods available to approximate soil thermal conductivity based on empirical 
observations or on a combination of theoretical and empirical results (Farouki 1981 and Shen 
1986). The method used in this research was developed by de Vries (1966) and has been shown 
to compare well with experimental data. In this model, we assume the soil consists of a 
continuous medium with an even distribution of ellipsoidal grains. The thermal conductivity is 
then estimated by Eq. (3.13). Water is considered to be the continuous medium except at very 
low moisture contents where air is used, and the result from this equation is multiplied by a 
correction factor of 1.25. 
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This equation represents an average of the thermal conductivities of water w, pores p, and n 
types of soil grains weighted by the volumetric contents x and the ratio of the average 
temperature gradient in the constituent and the average temperature gradient of the medium ξ. 
The latter term is a function of the thermal conductivity ratios and the size, shape, and packing of 
the soil grains. For randomly oriented ellipsoidal grains with axes a, b, and c, an approximation 
to this term is 
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The values of ga, gb, and gc depend upon the ratios of the grain axes, and they sum to unity. For a 
spheroid with axes a = b = mc, the value of ga = gb can be read from a graph in de Vries (1966). 
For example, the value of ga for the quartz grains is taken to be 0.144, which corresponds to a 
value of m ≅ 4. 

As discussed above, the latent heat transfer of the evaporation-condensation cycles significantly 
increases the thermal conductivity of the gas-filled pores. The main driving force for the vapor 
diffusion is the vapor density gradients brought about by the presence of temperature gradients. 
Because temperature is the main driving force, this heat transfer can be treated as an effective 
heat conduction, and the thermal conductivity of the gas-filled pores can be estimated as the sum 
of the thermal conductivity of the air ka and the effective thermal conductivity of the vapor 
diffusion kv. 

vap kkk +=  (3.15) 

The effective thermal conductivity of vapor distillation cycles for saturated conditions is derived 
in Chapter 4 and presented here for a single pore as 

dT
d

Dhk vs
afgsat,v

ρ
=  (3.16) 

The latent heat of vaporization is hfg (J/kg), Da (m2/s) is the vapor diffusion coefficient in air, and 
ρvs (kg/m3) is the saturated vapor density. When the gas-filled pores are not saturated, the 
effective thermal conductivity is proportional to the relative humidity, ϕ (Philip and de Vries 
1957). 

sat,vv kk ϕ=  (3.17) 

The behavior of the gas-filled pores varies with the moisture content, and therefore the method 
used to determine the value of ga,p for the gas-filled pores also changes. De Vries (1966) divides 
the calculation into three ranges of moisture content. In the first range, the relative humidity in 
the pores remains very close to unity and the effective thermal conductivity of the gas-filled 
pores is equal to ka + kv,sat. This range lies between saturation, θs, and a critical moisture content, 
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θk. Below this critical moisture content, continuity of the liquid water no longer exists, the 
relative humidity reduces quickly from unity, and the thermal conductivity decreases rapidly. A 
discussion on how to determine the value of θk is included at the end of this section.  

As the moisture content approaches saturation, it is assumed that the small air pockets are nearly 
spherical and the value of ga,p approaches 1/3. At the lower end of this first range, de Vries 
estimates that the value of  ga,p approaches 0.035, assuming that ga = 0.144 for the soil grains. 
The value of ga,p is assumed to vary linearly with moisture content between θs, and θk. 
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 (3.18) 

The second region is bounded by θk and θdry. The effective thermal conductivity of the vapor 
diffusion is considered to vary linearly between kv,sat at θk and 0 at lθ  = 0. Therefore, the thermal 
conductivity of the gas-filled pores is approximated as 

k
ks,vap )(kkk

θ
θ

θ+= l  (3.19) 

The value of ga,p is also assumed to vary linearly between the value determined from Eq. (3.18) 
at θk and ga = 0.013 corresponding to lθ  = 0. 
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The value of θdry is the lowest moisture content where water can be considered the continuous 
medium. Below θdry, de Vries suggests that the soil thermal conductivity be determined by 
graphical interpolation between k( dryθ=θl ) and k( 0=θl ). Graphical interpolation is taken here 
to be linear interpolation. The value of θdry is taken as 0.03 for coarse grain soils and between 
0.05 and 0.1 for fine grain soils (de Vries, 1966). The thermal conductivity of dry soil is 
calculated from Eq. (3.13) with 0=θl , θa = η, and ξa = 1, and the result is multiplied by 1.25. 

There are several suggested modifications to the de Vries method created by researchers to fit 
their experimental data (Shen, 1986). Shen compares the de Vries method and a modified version 
by Kimball et al. (1976) with experimental data for four soil types. The Kimball et al. 
modification performs better for coarse grain soils, but the de Vries method produced better 
results for a finer-grained, silty soil. De Vries (1966) reported excellent results for a wide range 
of soil types; therefore, the original method developed by de Vries is used in this work.  

There is no definite method used to determine the value of the critical moisture content, θk. If 
reliable experimental data for the thermal conductivity are available, the value can be used as a 
parameter to fit the data; otherwise, it must be estimated. De Vries claims that for coarse-grained 
soils, it is approximately equal to the field capacity, which is very close to the wilting point for 
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these soils. Shen (1986) reviews methods to estimate the critical moisture content from the 
curvature of the soil moisture-retention curve. These methods are subjective and tend to give 
values higher than those of de Vries. An easier method is to look at the relative humidity of the 
gas-filled pores and determine the point where it begins to decrease from unity. If the soil liquid 
and vapor are in thermodynamic equilibrium, and in the absence of solutes, the relative humidity 
of the soil moisture may be written as (Edlefsen and Anderson 1943)  
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TR
gexp
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The acceleration of gravity is g, and the gas constant for water vapor is Rw. Figure 3.5 shows a 
graph of this equation as a function of the matric potential at 10°C. Varying the temperature 
between 0°C and 50°C has very little effect on this curve, especially on the point of departure 
from unity. 

Figure 3.5. Relative humidity of soil moisture at a temperature of 10°C. 

At a matric potential of –100 m, the relative humidity ϕ = 0.9925, and at ψ = -50 m, ϕ = 0.9963. 
From the soil moisture-retention curve in Figure 3.2 with a value of ψ = –50 m, the critical 
moisture contents for the loamy sand and Yolo light clay are approximately 0.02 and 0.16. This 
is by no means an exact method, but it does give some physical basis and a good starting point. 
The actual values used for the soils in this research are listed in Table C.3 in Appendix C. 

Figure 3.6 shows the effective thermal conductivity of saturated vapor distillation cycles from 
Eq. (3.16) as compared with the thermal conductivity of water and air. It must be remembered 
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that vapor distillation occurs only in the gas-filled pores and that the effective thermal 
conductivity from this cannot be directly compared to the thermal conductivity calculated for the 
soil. This graph also shows the effective thermal conductivity of Yolo light clay (Moore 1939) 
for three moisture contents as calculated by the de Vries method. The nonlinear behavior of the 
curves is mainly caused by the heat transfer of vapor distillation. This effect is most important at 
low moisture contents as can be seen in Figure 3.7, which shows the thermal conductivity for a 
sandy loam calculated with and without the vapor diffusion term in Eq. (3.15). 

Figure 3.6. The effective thermal conductivity of vapor distillation in the gas-
filled pores as compared to that of water and air and the total 
effective thermal conductivity of Yolo light clay as calculated by 
the de Vries Method.  
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Figure 3.7. Effective thermal conductivity of Bighorn sandy loam as a 
function of moisture content with and without the vapor diffusion 
term. 

3.3.5. Effects of Freezing  
The effect of freezing on the thermal and hydraulic performance of soil is not well understood. 
Kersten (1949) completed the most extensive experimental work concerning the effects of 
freezing on the thermal properties of soil by measuring the thermal conductivity of 19 soils at 
different temperatures, densities, and moisture contents. The results showed that as a soil freezes, 
the thermal conductivity decreases for low moisture contents and increases for high moisture 
contents. For all of the experiments, the soils were frozen quickly, so it was not expected that ice 
lenses had time to form, which would alter the results. 

One way to approximate the thermal conductivity of frozen soil is to use the de Vries method, 
treating ice as another soil constituent. Harlan (1973) used this method but simplified it so the 
ratios of the temperature gradients were set to one for all soil particles. The de Vries method, 
without Harlan’s simplification, was compared with Kersten’s results (1949). Kersten presented 
graphs of the thermal conductivity ratio of soil at 25°F (-4°C) and 40°F (4.4°C). He also 
measured the thermal conductivity of the soils at -20°F (-28.9°C), which was similar to the 
results at 25°F. Comparisons of the de Vries method and Kersten’s measured values for 
Fairbanks silty clay loam, which is similar to Yolo light clay, and Dakota sandy loam are shown 
in Figure 3.8. The approximated values follow the general trend of the measured values, 
especially for the Fairbanks silty clay loam.  
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Figure 3.8. Ratio of the thermal conductivities of frozen and unfrozen soil as 
approximated by the de Vries method and measured by Kersten 
(1949) for Fairbanks Silty Clay Loam and Dakota Sandy Loam. 
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Chapter 4: Model Development 
 
4.1. Introduction 

Modeling ground-coupled heat transfer is complicated by the many unknowns and the complex 
physical processes involved. In most cases, the heat transfer is tightly coupled with the moisture 
transfer in the soil; therefore, an accurate model must solve both problems simultaneously. This 
chapter outlines the development of a model directed towards ground-coupled heat-and-moisture 
transfer around buildings. A more complete derivation is included in Appendix A.  The two-
dimensional, ground-coupled, heat-and-moisture transfer equations were coded in a Fortran 90 
computer program called GHAMT. A two-dimensional heat-conduction program was also 
created called GHT2D. 

4.2. Coupled Heat and Moisture Transfer Model 

There are two macroscopic approaches to the heat-and-moisture-transfer problem in soils. One 
uses irreversible thermodynamics to describe the interactions of the forces and fluxes involved 
(Cary and Taylor 1962a and 1962b and Jury 1973). The other method is a mechanistic approach 
based on physical models of the phenomenological processes that occur in the soil (Philips and 
de Vries 1957, de Vries 1958, and Jury 1973). The second approach is better at addressing the 
vapor phase change, the vapor diffusion process, and the interaction of the heat transfer in the 
soil matrix and soil pore system (de Vries 1975). Because of these strengths, the mechanistic 
approach was chosen for this work. 

The moisture-transfer equations can be cast in terms of the moisture content (θ-based equations) 
or in terms of the matric potential (ψ-based equations). The θ-based approach is slightly simpler 
and avoids problems with mass convergence, but the diffusivity is undefined at saturation and is 
discontinuous at the interface between soil types. The ψ-based equations can handle saturation 
and is continuous for layered soils (Hillel 1998). Because of the ability to handle saturated soil, 
the ψ-based approach is used in this work.  

As stated in Chapter 3, the main simplifying assumptions made in the derivations are as follows: 
the soil is homogenous and isotropic within each defined unit of soil; the soil matrix is 
nondeformable, and therefore, swelling and frost heaving are not modeled; the effects of solutes 
are neglected; and hysteresis of soil properties is not modeled. Other assumptions are stated as 
appropriate in the descriptions below. 

4.2.1. Liquid Transfer 
Darcy’s law can be used to approximate the flow of water through saturated soil by relating the 
flow, lu  (m/s), to the gradient of the hydraulic head. When the soil is unsaturated, the water 
pressure is less than ambient and is referred to as the soil suction or soil water matric potential, ψ 
(m). Richards extended Darcy’s law to unsaturated soil by using the gradient of the total 
potential, Φ, and defining the hydraulic conductivity, K (m/s), as a function of the soil water 
matric potential (Hillel 1998).  
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Φψ−= ∇)(Klu  (4.1) 

As described in Chapter 3, the total potential is taken as the sum of the matric and gravitational 
potentials as presented in Eq. (4.2), where z is taken as positive upwards. The potential is often 
expressed as an equivalent head of water and therefore has the dimension of length. 

z+ψ=Φ  (4.2) 

Substitution of Eq. (4.2) into Eq. (4.1) yields 

k̂KK −ψ−= ∇lu  (4.3) 

By applying the continuity equation to the liquid moisture content of a control volume of soil, 
the conservation of liquid can be written as 
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The volumetric liquid moisture content is lθ  (m3/ m3) and the evaporation from the liquid to the 
vapor phase in the soil pores is E (s-1). The liquid content is a function of the matric potential and 
temperature; therefore, the time derivative of the liquid content can be expanded by the chain 
rule to give 
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Substitution of Eqs. (4.3) and (4.5) into (4.4) gives the governing equation for liquid transfer: 
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where the matric and thermal liquid capacitances are defined as 
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4.2.2. Vapor Transfer 
The vapor diffusion in a gas-filled pore can be approximated by modifying Fick's law of 
diffusion, assuming a uniform and constant total pressure, P (Pa) (de Vries 1975 and Nakano and 
Miyazaki 1979). 
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The molecular diffusivity of water vapor in air is Da (m2/s), Rw (= 461.5 J/kg K) is the gas 
constant for water vapor, T (K) is the absolute temperature, and Pv is the partial pressure of the 
water vapor. The mass-flow factor as defined in Eq. (4.10) is nearly unity for all conditions in the 
soil around buildings and is therefore not included in the equations after this point. The 
molecular diffusivity of water vapor in air is Da and can be determined by Eq. (4.11) (deVries 
1975). 

vPP
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The reference pressure is Po = 1.01325 x 105 Pa, the reference temperature is To = 273.15 K, c = 
2.17 x 10-5 m2/s, and n = 1.88. 

Assuming the vapor behaves as an ideal gas, the vapor diffusion equation can be written in terms 
of the vapor density as 
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The term ( )pT∇ is the temperature gradient across a single gas-filled pore. The vapor density in 

the pores can be expressed as the product of the relative humidity, ϕ, and the saturated vapor 
density, ρvs (Edlefsen and Anderson 1943). 

ϕρ=ρ vsv  (4.13) 

If the soil liquid and vapor are in thermodynamic equilibrium, and in the absence of solutes, the 
relative humidity of the soil moisture may be written as (Edlefsen and Anderson 1943)  
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The acceleration of gravity is g, and the gas constant for water vapor is Rw. From Eqs. (4.13) and 
(4.14), the vapor density gradient can be expanded, and the vapor diffusion equation can be 
written as 
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The four coefficient terms of the temperature gradient are plotted as a function of the matric 
potential in Figure A.2. From this graph, it is easy to see that the second and third terms are 
negligible for ψ > -104 m and quickly become the dominant terms below this point. Only in 
extreme dry conditions is the matric potential less than –104 m. However, since these terms 
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become large very quickly, they are included for ψ < -104 m. The term (1/T) is considered 
negligible and dropped from the calculations. 

The vapor mass flux presented in Eq. (4.15) is for a single pore and must be altered when 
extending it to a porous soil system. The effects of the reduced cross section for diffusion, the 
tortuosity, and the interactions between the vapor and liquid phases must be addressed. A vapor 
diffusion correction factor, )(f lθ , is added to account for these effects. In addition, the 
temperature gradients across the gas-filled pores are higher than those across the system because 
of the lower thermal conductivity of the gas-filled pores. The temperature gradient term is 
multiplied by the ratio of the average temperature gradient across the pores and by the 
temperature gradient across the system. The vapor diffusion correction factor as defined by de 
Vries (1958) is 
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The soil porosity is η, and θk is a critical moisture content, below which the hydraulic 
conductivity falls to a value much lower than its value at saturation (Philip and de Vries 1957). 
This value of critical moisture content is not strictly the same as the value defined in Chapter 3 in 
the discussion of the thermal conductivity, but is taken as the same value in this work. 

With these additions, the vapor mass flux of Eq. (4.15) divided by the liquid density for 
consistency with the liquid transfer equation can be written for the soil system as 
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where the matric and thermal vapor diffusivities are 
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An expression for the ratio of the temperature gradients follows from the de Vries method of 
approximating the thermal conductivity (Chapter 3 and Appendix C) and can be calculated as 
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The vapor content is expressed as an equivalent liquid content, and assuming thermodynamic 
equilibrium between the liquid and vapor, we can write   
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Expanding ( )t/v ∂θ∂  yields 
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Substituting Eq. (4.5) into Eq. (4.22) and expanding the other time derivatives in terms of ψ and 
T yields  

t
TC

t
C

t Tvv
v

∂
∂

+
∂
ψ∂

=
∂
θ∂

ψ  (4.23) 

where the matric and thermal vapor capacitances are 
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The conservation of vapor content can be written as 
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The governing equation for vapor transfer can now be derived by substituting Eqs. (4.17) and 
(4.23) into (4.26). 
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4.2.3. Total Moisture Transfer 
The moisture transfer equation is then found by combining the equations for liquid and vapor 
transport, Eqs. (4.6) and (4.27): 
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where the matric and thermal moisture capacitances are 

vm CCC ψψψ += l   [m]  (4.29) 

TvTTm CCC += l  [K]  (4.30) 
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and the matric and thermal moisture diffusivities are 

vm DKD ψψ +=   [m/s]  (4.31) 

TvTm DD =  [m2/s K]  (4.32) 

4.2.4. Heat Transfer 
Heat transfer in soil occurs by conduction, convection, and latent heat transfer by vapor 
distillation cycles, sensible heat transfer by vapor and liquid movement, and by radiation. 
According to de Vries (1958), the heat transfer in unsaturated soil is dominated by pure 
conduction, with a small addition by latent heat transfer of vapor movement. The sensible heat 
transfer by bulk liquid movement is only important for a few days after a large rainfall or other 
moisture at the surface. For most cases, the sensible heat transfer by vapor movement and by 
radiation is negligible.  

By applying the conservation of energy on the soil system we can write 
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The thermal internal energy is e (J/kg) and is defined in Eq. (4.34), the heat flux in the soil 
system is q (W/m2) and is defined in Eq. (4.35), and the heat generation is q ′′′  (W/m3). The soil 
system is considered composed of solid soil grains, liquid water, water vapor, and air (with other 
gases). Neglecting the heat capacity of the air, the thermal energy of the soil system relative to an 
arbitrary reference temperature, To, can be written as (Jury 1973) 
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The subscript s refers to the solid soil particles, l to the liquid moisture phase, and v to the vapor 
phase. The specific heat capacities are denoted by Cp (J/kg K), the latent heat of vaporization is 
hfg (J/kg), and θv is defined as an effective liquid volumetric content. The heat of wetting, W, is 
the energy released when the water molecules adsorb on the surface of the soil grains. It is a 
function of the initial moisture content and surface area (Hillel 1998). It is only significant for 
wetting dry clay soils and is neglected in this work. Implicit in Eq. (4.35) is the assumption that 
the thermal sources and sinks are uniformly distributed throughout the soil system. 

The heat flux in the soil consists of conduction, convection, and radiation. The conduction term 
is dominant, and the radiation term is negligible except at very high temperatures. With this in 
mind, the heat flux in the soil can be represented by:  

vov,po,pvofg
* )TT(C)TT(C)T(hTk mmmq &&& ll −+−++−= ∇  (4.35) 

Note that the heat fluxes are not strictly additive as this equation indicates. The various heat 
transfers occur along different paths through the soil (de Vries 1958). However, a complete 
treatment of this would require a microscopic model of the processes occurring on a soil pore 
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level. The thermal conductivity k* represents the pure heat conduction through the soil system 
with no moisture movement. Note that this is different from the thermal conductivity k measured 
in a soil system and calculated by the de Vries method (Chapter 3 and Appendix C) that includes 
the effect of latent heat transfer by vapor distillation.   

Substituting Eqs. (4.34) and (4.35) along with the liquid and vapor mass fluxes from Eqs. (4.3) 
and (4.17) into Eq. (4.33) yields 
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The total volumetric heat capacity of the soil system and the latent heat of vaporization at 
temperature T can be defined as 

v,pv,ps,ps CCC)1(C llll ρθ+ρθ+ρη−=   [J/m3·K]  (4.37) 

)TT(C)TT(C)T(h)T(h opvopofgfg −+−−= l   [J/kg]  (4.38) 

The latent heat (enthalpy) of vaporization, hfg(T), is approximately a linear function of 
temperature and can be represented by Eq. (4.39). Standard steam tables use a reference 
temperature of 0.01°C for the enthalpy (ASHRAE 1997); however, it is assumed to be 0.0°C in 
this work. 

]kg/kJ[)15.273T(405.22501)T(h fg −−=  (4.39) 

With the substitution of Eqs. (4.37) and (4.38) and substitutions for the liquid and vapor mass 
fluxes, Eq. (4.36) becomes the final version of the governing equation for soil heat transfer. 
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where the thermal and matric heat capacitances are 

TvfgTT ChCC lρ+=   [J/m3 K]  (4.41) 

vfgT ChC ψψ ρ= l   [J/m4]  (4.42) 

and the matric heat conductivity is 

vfgT DhD ψψ ρ= l   [W/m2]  (4.43) 

The first term on the right hand side of Eq. (4.40) represents the Fourier heat conduction defined 
by the thermal conductivity k* and the effective heat conduction by thermally driven vapor 
diffusion. The effective thermal conductivity, k, is the value calculated by the de Vries method 
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(1966) and described in Chapter 3 and Appendix 3. The second term is the heat transfer by 
moisture diffusion caused by the matric potential gradient, which corresponds to the moisture 
gradient. This term is much smaller than the first term, which is evident from Figure 4.1(b). The 
third term is the sensible heat transfer by bulk liquid flow. In unsaturated soil, this term is only 
significant for a short period after a large influx of moisture such as rainfall or irrigation. The 
final term is a heat generation term. A comparison of the magnitudes of the heat transfer terms is 
presented in Chapter 6. 

The first term on the left hand side of Eq. (4.40) relates the change in the thermal energy stored 
to changes in temperature, and the second term relates the change in thermal energy stored to 
changes in the matric potential. The temperature term dominates the heat storage as can be seen 
in Figure 4.1(a), which shows the two-capacitance coefficients as a function of moisture content 
for Yolo light clay. When comparing the two-capacitance coefficients, it must be kept in mind 
that they are multiplied by the time rate of change of the temperature and the time rate of change 
of the matric potential respectively. 

Figure 4.1. Heat-capacity coefficients (a) and the heat-conductivity 
coefficients (b) for Yolo light clay as a function of moisture 
content at 293.15 K. 

4.2.5. Freezing Model 
Freezing the soil affects the heat transfer, not only through the release and adsorption of the 
latent heat of fusion, but also through changes in the thermal and hydraulic properties. The 
thermal conductivity of frozen soil can be more or less than that of unfrozen soil depending on 
the moisture content (Kersten 1949). The most obvious effect of freezing on the moisture 
transfer is the moisture’s immobility in the completely frozen state. The not-so-obvious detail is 
that the phase change is not isothermal; in fact, a very small amount of liquid water remains even 
at temperatures near liquid nitrogen (Harlan 1973). However, most of the liquid-to-solid phase 
change occurs between 0.0°C and –0.2°C, depending on the soil type (Horiguchi and Miller 
1983). The remaining unfrozen water content exists in thin films adsorbed on the soil grains. The 
presence of solutes lowers the freezing point and can cause pockets of unfrozen moisture as the 
solute becomes concentrated ahead of the freezing front (Kay and Perfect 1988). 
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The purpose of this model is to capture the main effects of freezing on the heat transfer. The 
most important effects are the latent heat of fusion, the change in thermal conductivity, and the 
loss of mobility of the moisture. This can all be accomplished with an isothermal freezing model, 
shown in Figure 4.2. The effects of solutes and the expansion and contraction of the soil matrix 
(frost heaving) are neglected. The equations used in the model are included in Appendix A.  
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Figure 4.2. Isothermal soil freezing model with the unfrozen and frozen soil 
thermal capacitances, Cuf and Cf, and the latent heat of fusion, Lf. 

4.3. Boundary Conditions 

The most relevant and interesting boundary is that exposed to the ambient conditions; all other 
boundaries are a subset of this. Shipp (1979) showed that the treatment of the ground surface has 
the largest impact on the local values of the underground-wall heat fluxes. The energy and 
moisture balances at the ground surface are examined in this section. 

4.3.1. Energy Balance 
A thermal energy balance at the surface can be viewed as that shown in Figure 4.3. The constant 
temperature condition is defined in Eq. (4.44), and the flux boundary condition is defined by Eq. 
(4.45); all heat flows are taken positive into the control surface. Because of this definition, the 
evaporation term is positive for moisture addition. 

sTT =   [K]  (4.44) 

0qqqqq vconvradsensg =++++   [W/m2]  (4.45) 

The first term in Eq. (4.45) represents heat conduction in the ground caused by gradients normal 
to the surface of temperature and matric potential.  
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qsens qconv qv qrad 
ground surface 
at temperature Ts  

control surface 

Ambient at Tamb and φamb  

qg 
 

Figure 4.3. Thermal energy balance at the ground surface. 

The sensible heat, qsens, is divided into two sources:  that caused by bulk liquid transfer across the 
boundary lq  and another term qh to account for all other miscellaneous heat transfer sources. 
Only the liquid transfer at the surface caused by precipitation or irrigation is considered in this 
paper; other sources can be treated in a similar manner. The details of this liquid transfer are 
presented in Section 4.3.2. The heat transfer caused by the bulk liquid flow across a boundary is 
calculated relative to a reference temperature To, as shown in Eq. (4.48). The temperature of 
liquid lT  at the atmospheric boundary is assumed equal to the ambient dry-bulb temperature. 
The reference temperature is taken to be 0.0°C, because this is the reference temperature used for 
the enthalpy of vaporization (see Eq. (4.39).  

hsens qqq += l  (4.47) 

)TT(CUq op −ρ= llll  (4.48) 

The radiation term qrad can be divided into absorbed shortwave radiation from the sun qsw and the 
long-wave radiation exchange between the ground and the atmosphere qlw. The shortwave 
radiation, shown in Eq. (4.50), consists of the direct normal and diffuse components. The amount 
of the shortwave radiation that is absorbed depends on the ground albedo or reflectivity, which 
ranges from 0.05 for blacktop to 0.98 for fresh snow (Geiger et al. 1995). 

lwswrad qqq +=  (4.49) 

)II)(1(q dfdngsw +ρ−=  (4.50) 

The long-wave radiation exchange between the ground and the sky is modeled by Eq. (4.51), 
which assumes that the ground behaves as a gray body and that the infrared emissivity, εs, and 
absorptivity are equal (Martin 1989).  

)TT(q 4
sky

4
sslw −σε=  (4.51) 

The Stefan-Boltzmann constant is σ (= 5.6686 x 10-8 W/m2 K), the ground surface temperature is 
Ts (K), and Tsky is the temperature of a blackbody emitting the same amount of radiation as the 
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sky. Martin and Berdahl (1984) linearized Eq. (4.51) by introducing a sky-temperature 
depression, ∆Tsky = Tamb- Tsky, and a surface-temperature depression, ∆Ts = Tamb- Ts.  
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 (4.52) 

The sky temperature is calculated by 
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skysky TT ε=  (4.53) 

Martin and Berdahl calculated the clear-sky emissivity as a function of the dew point 
temperature Tdp (ºC) and made adjustments for the time of day t (hr) and the elevation by the 
location pressure P (Pa). 
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The correction for several cloud layers i is 

( )∑ Γεε−+ε=ε
i

ii,cioosky n1  (4.55) 

The fractional area of the sky covered by each cloud layer as seen by an observer on the ground 
is ni, which must equal one. The hemispherical cloud emissivity is εc,I, and Γi is a factor that 
accounts for the cloud-base temperature. Low- and mid-level clouds tend to be opaque and are 
assumed to emit as a blackbody (εc ≅ 1.0), while the emissivity of high-level clouds varies. 
Martin and Berdahl assume an emissivity of 0.4 for high-level cirrus clouds. The cloud 
temperature factor, Γ, is small for high cold clouds and approaches unity for low opaque clouds. 
Because cloud base temperatures are usually not available, Martin and Berdahl approximated Γ 
as a function of the cloud base height, h (m), and ho = 8200 m. 
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Information on the cloud cover and the cloud base height is available in the Typical 
Meteorological Year 2 (TMY2) data files as total sky cover, opaque sky cover, and ceiling height 
(NREL 2003). TMY2 files contain weather information for 248 locations throughout the United 
States. For this model, the cloud cover is divided into low-level opaque clouds and high-level 
cirrus clouds. The high-level cloud cover is the total sky cover–opaque sky cover. If there is low-
level cloud cover, the height is read from the file as the ceiling height and is assumed to be 2,000 
m if no information is available. The height of the high-level clouds is assumed to be 8,000 m or 
the ceiling height if the opaque sky cover is zero. 
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The governing equations for qconv and qv have a similar form because the heat and mass transfer 
processes from the ground to the air behave similarly. Convection and evaporation depend on the 
wind speed, the surface conditions, and the gradients of temperature and vapor density. The basic 
equations for convective heat and vapor transfer are 

)TT(DC
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sambha,Pa

sambconv

−ρ=
−=

 (4.57) 

)(Dhq s,vamb,vvfgv ρ−ρ=  (4.58) 

The convection heat transfer coefficient is h (W/m2 K), the heat and mass diffusivities in air are 
Dh (m/s) and Dv (m/s), and the vapor densities at the ambient and surface conditions are ρv,amb 
and ρv,s. 

The wind speed and air temperatures have been verified by experiments to be approximately 
linear with the log of height above the ground. The non-dimensional velocity profile can be 
approximated by (Plate 1971) 
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The frictional velocity *u  is defined as ( ) 21ρτ , κ is von Karman’s constant (usually taken as 
0.4), z is the height above the ground, and zo is the roughness height. The roughness height is a 
characteristic of the surface and may be interpreted as the size of the smallest turbulent eddy 
(Businger 1975). An approximate value as a function of the vegetation height, zveg, averaged for 
different vegetation types is (Plate 1971) 

vego z15.0z =  (4.60) 

The stability of the air mass above the ground can be estimated by the Richardson number, 
which relates the buoyancy and frictional forces. The air mass tends to be stable for positive 
values of the Richardson number and unstable for negative values (Sellers 1965). The 
Richardson number is shown in Eq. (4.61), where θ (= T+gz/Cp) is the potential temperature 
(Businger 1975). 
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The derivatives in this equation can be approximated by (Paulson 1970) 
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Therefore, an approximation to the Richardson number, replacing the potential temperature with 
the absolute temperature is 
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Notice that this definition of the Richardson number goes to infinity as the wind speed goes to 
zero; therefore, this relationship is not valid for small wind-speed values.  

The complex interactions of the plant cover, such as the canopy density, root distribution, and 
physiological responses to water stress, also play an important role in the heat-and-mass-transfer 
process (Hillel 1998), but are beyond the scope of this work. Plant cover effects are assumed to 
be approximated by averages over a large area and over long periods. 

There are numerous eddy-diffusivity models to approximate the heat-transfer coefficients 
(Jensen 1973, van Bavel and Hillel 1976, Sellers 1965, and Camillo and Gurney 1986). These 
models are compared in Appendix D, and the Jensen model was chosen as the best fit for this 
research.  

For neutrally stable conditions, the momentum-transfer coefficient can be calculated as 
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Here, κ is the von Karman constant, uw (m/s) is the local wind speed, zw (m) is the height of the 
wind speed measurement, and zo (m) is the roughness height of the ground surface. The heat-
diffusivity coefficient is determined by using the following stability-correction relationships:  
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The wind speed, as taken from weather data files, is usually measured in an open area at a height 
of 10 m and must be adjusted to the local conditions. This adjustment accounts for terrain and 
height differences between the measurement location and location of interest. One method of 
adjusting this is (Sherman and Grimsrud 1980) 
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The subscript met refers to the meteorological conditions, and α and γ are terrain-dependent 
parameters given in Table 4.1. 
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Table 4.1. Terrain Parameters for Wind (Sherman and Grimsrud 1980) 

Class γ α Description 
I 0.10 1.30 Ocean or other open body of water with at least 5 km of 

unrestricted expanse 
II 0.15 1.00 Flat terrain with some isolated obstacles 

(buildings or trees are separated) 
III 0.20 0.85 Rural areas with low buildings, trees, etc. 
IV 0.25 0.67 Urban, industrial, or forest areas 
V 0.35 0.47 Center of large city 

 

Air stability is difficult to model when there is a very low wind speed. In this region, natural 
convection takes over and the forced convection models fail. The transition between forced and 
natural convection is modeled by blending the two coefficients. For transverse flows over a 
horizontal plate, the forced and natural convection terms can be combined by Eq. (4.68) 
(Incropera and DeWitt 1985). Note that the length scales are slightly different in the forced and 
natural convection values of NuL; therefore Eq. (4.69) does not derive exactly from the Nu 
correlation. The characteristic length for the forced convection from a horizontal surface is the 
length of the surface, and for natural convection, it is the area/perimeter ratio, which is L/4 for a 
square surface. 
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Natural convection from a horizontal flat plate can be estimated by (Incropera and DeWitt 1985) 
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The Rayleigh number is defined as 
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For the conditions encountered for natural convection from the ground surface, it can easily be 
shown that RaL > 107; therefore the second relation in Eq. (4.70) is used and the natural 
convection heat transfer coefficient can be approximated by  
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The film temperature, Tf, is the average of the ambient and surface temperatures.  
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4.3.2. Moisture Balance 
The moisture balance at the ground surface is shown in Figure 4.4, and the constant moisture and 
flux boundary conditions are defined in Eqs. (4.73) and (4.74). Moisture transfers into the control 
surface are taken as positive.  

ψ=ψ s   [m]  (4.73) 

0vg,m =++ mmm &&& l   [kg/m2 S]  (4.74) 

 ground surface 
at potential ψs 
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Ambient at Tamb and φamb 

l&m

g,mm&

vm&

 

Figure 4.4. Moisture balance at the ground surface.  

The moisture transfer in the ground is represented by Eq. (4.75). This term includes the liquid 
transfer caused by the gradient of the total potential, Φ, and vapor transfer caused by gradients of 
the matric potential and temperature. This equation is used to include the natural boundary 
conditions in the finite-element analysis equations (Appendix D).  
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The liquid transfer at the surface is assumed to be in the form of precipitation or irrigation 
measured in (mm/hr). The amount of moisture absorbed by the soil depends not only on how dry 
the soil is but also on the surface texture. A rougher surface has more surface area and may have 
cracks that allow the moisture to penetrate quickly into the soil. Modeling these surface effects 
can become very complicated and is not considered in this model. The moisture is added to the 
surface node up to the point of saturation, and any additional moisture during the time step is 
assumed to run off. The volume available to absorb the moisture is the node volume, Vn, times 
the difference between the porosity, η, and the volumetric moisture content, lθ . The volume of 
moisture available is the amount of precipitation, dp (m/s) times the node surface area, As. The 
amount of liquid crossing the boundary in (kg/m2 s) is then: 

)tA/()]A*d(),V*)[((MINm sspn ∆θ−ηρ= lll&  (4.76) 

This simple model will not work well for soils that are compacted, where most of the water runs 
off or for soils with large cracks. Also, it will not work well for terrain that pools the water, 
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allowing it to be absorbed at a later time, or a terrain that is sloped so that very little of the water 
is absorbed. 

The vapor transfer, vm&  (kg/m2 s), is defined as an equivalent liquid transfer rate by multiplying 
the actual vapor transfer rate by the density ratio ( )lρρv . Vapor is transferred mainly by 
evaporation from the surface.  

)(Dm s,vamb,vvv ρ−ρ=&  (4.77) 

Penman (1948) describes three approaches to calculating the evaporation: sink strength, or 
aerodynamic energy, and a combination of the first two, which eliminates the need to know the 
surface temperature. The aerodynamic approach, as shown in Eq. (4.76), is the most common. 
The vapor diffusion coefficient, Dv, is often approximated as being equal to the thermal diffusion 
coefficient, Dh. A more rigorous approach is obtained by noting the similarity between the heat-
and-mass transfer phenomena. Because the equations governing heat-and-mass transfer are 
analogous, the dimensionless parameters from these equations can be related. The transfer 
coefficients can be related as shown in Eq. (4.78) (Incropera and De Witt 1985).  

nn Sc
Sh

Pr
Nu

=  (4.78) 

Substituting the definitions of Nu and Sh: 
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which can be rearranged to give 
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According to Incropera and De Witt, n = 1/3 works well for most cases.  

Using aerodynamic resistance alone has been shown to over-predict the evaporation from bare 
soil (Camillo and Gurney 1986) and from plant canopies (Shuttleworth 1993); therefore, a 
surface resistance is added in series. This term accounts for the resistance of the path from the 
vapor source to just outside the surface. Camillo and Gurney found from their experiments in 
Phoenix that this surface resistance behaves as a linear function of the moisture content at the 
surface. Their correlation, shown in Eq. (4.81), increases as the soil surface dries out and 
approaches zero as the volumetric moisture content approaches 0.2. This correlation was 
empirically derived from their experiments, and extending it to other situations without testing is 
questionable; however, it is used, with caution, in this paper for lack of a better alternative. 

)0,4140810(MAXr ss θ−=  (4.81) 

Now the evaporation equation, with ra = 1/Dv, becomes 
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4.4. Heat Transfer Model 

A heat transfer only model was also developed in order to compare with the heat-and-moisture 
transfer model. This model is much simpler and is based on the standard transient heat 
conduction equation shown in Eq. (4.83). 
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The boundary conditions are the same as the energy balance used in the heat-and-moisture 
transfer model as described in Section 4.3.1, except for the heat transfer associated with 
evapotranspiration. Because the moisture at the surface is not modeled, a different approach to 
this heat flow must be taken. Jensen (1973) presents a detailed derivation of an 
evapotranspiration model with three components, shown in Eqs. (4.84) to (4.86). The first 
component in Eq. (4.84) is the portion of the incoming heat energy from solar radiation and 
conduction from the ground that is converted directly to latent heat. The ratio ∆/(∆ + γ) is the 
fraction of the energy added to the surface used for evaporation. The term, ∆, is the derivative of 
the saturated water vapor pressure with temperature and γ is sometimes called the psychrometric 
constant and defined in Eq. (4.87). A constant value of 66 Pa/K is often used for this constant. 
The second evapotranspiration component in Eq. (4.85) represents the energy removed from the 
air and supplied for evaporation at the surface. The difference between the ambient temperature 
and the wet-bulb temperature at height z, (Tamb – Twb), is called the wet-bulb depression D. The 
final term in Eq. (4.86) is the latent energy released by condensation at the surface when the 
vapor pressure is less than the saturation vapor pressure. Combining all three terms results in Eq. 
(4.88), where the surface wet-bulb depression (Ts – Twb,s) is denoted by Ds and the negative sign 
in front of the equation is a result of the direction of positive heat flux defined in Figure 4.3.  
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A more useful form of Eq. (4.88) can be derived by rearranging Eq. (4.45) and substituting into 
the first term of Eq. (4.88) as shown in Eq. (4.89).   
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One difficulty with using Eq. (4.89) in the heat conduction model, is that the wet-bulb 
temperature at the surface, Twb,s, is not known. If the vapor pressure at the surface is equal to the 
saturated value, then the wet-bulb depression at the surface Ds is zero. When this is true, and 
when water is not the limiting factor, evapotranspiration occurs at the maximum rate, which is 
called potential evapotranspiration. Evapotranspiration rarely occurs at the potential value or at 
zero; therefore, it is up to the researcher to make educated assumptions about the appropriate 
level to use. A useful method is to bracket the results with an evapotranspiration ratio, Kevap, 
which is defined as the ratio of the actual evapotranspiration and the potential evapotranspiration. 
With this ratio, the evapotranspiration for the heat transfer model can be expressed as Eq. (4.90), 
where hv represents an evapotranspiration heat transfer coefficient.  
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By combining all of the equations in the energy balance at the surface, Eq.’s (4.50), (4.52), and 
(4.57), the energy balance can be written as Eq. (4.91). The surface temperatures, Ts, are 
unknown and are solved for as part of the system of equations. 
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4.5. Finite Element Formulation 

Because of the complexity and nonlinearity of the heat-and-moisture transfer equations, an 
analytic solution would be extremely difficult to obtain. Therefore, a numerical approach, such 
as the FDM or the FEM, is usually used to solve the problem. The main advantage of the FDM is 
that it easy to understand and code, and it is faster than the FEM for many applications. In 
addition, the FDM produces a better moisture balance with no oscillations for the problem of 
infiltration into an initially dry soil (Celia et al. 1990). The main disadvantage is that it is not as 
flexible as the FEM in accepting domain geometries. 

The FEM is more complicated and harder to program than the FDM; however, once coded, it is 
much more flexible. The FEM easily models complex domain geometries, and accepts mesh 
refinement or expansion with little effort. The FEM is also flexible with boundary conditions and 
material properties. The problem of mass conservation and oscillations can be overcome by 
diagonalizing or lumping the mass matrix (Celia et al. 1990), which will be discussed later.  

In the FEM, the problem domain is divided into elements with three or more nodes for two 
dimensions and four or more nodes for three dimensions. The dependent variables, in this case T 
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and ψ, are approximated with piecewise continuous functions over the elements. These 
approximations over each element are of the form (Zienkiewicz and Taylor 1989) 
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where Ti and ψi are the element nodal point values of temperature and matric potential, Ni are 
shape functions, and n is the number of nodes per element.  

For three- or four-node, two-dimensional elements, the shape functions are linear. Higher order 
approximations can be used with elements having more nodes. A single FEM mesh may contain 
elements of different node numbers as long as they are compatible at the adjoining boundaries. 
However, this adds complexity to the program when forming the global matrices. The programs 
written for this research allow only three- or four-node elements, and only one type may be used 
for each mesh. The programs are based on the FEM program, TRANS, developed by Thompson 
(1999). It is a two-dimensional transient FEM program using isoperimetric elements and written 
in Fortran 90. The algorithm was developed using the Galerkin weighted-residual method. 

The heat transfer equation, Eq. (4.40), and the moisture transfer equation, Eq. (4.28), are 
transformed into the following equations for the FEM. The details of the transformation are 
included in Appendix D. 

0TTTTTTT =++++ ψψ fψCTCψDTD &&  (4.93) 

0mTmmTm =++++ ψψψ fψCTCψDTD &&  (4.94) 

The conductance matrices are denoted by D’s, and the capacitance matrices by C’s. The two sets 
of Eqs. (4.93) and (4.94) can be combined into one system assembled by alternating equations 
for T and ψ for each node as shown below. 

0=++ fUCUD &  (4.95) 

A single-step algorithm for the transient analysis is presented in Eq. (4.96), where k denotes the 
time step and β is a time-weighting function, which determines whether the method is explicit or 
implicit (Zienkiewicz and Taylor 1989). All the analyses completed in this work applied a time-
weighting function of 0.5, which is analogous to the Crank-Nicolson implicit routine used in 
finite differences. Equation (4.97) represents Eq. (4.96) with [CPD] for C plus D and [CMD] for 
C minus D. The forcing function is averaged assuming a linear variation in time as in Eq. (4.98). 

[ ] [ ] fUDCUDC tt)1(t k1k ∆−∆β−−=∆β+ +  (4.96) 

[ ] [ ] fUCMDUCPD tk1k ∆−=+  (4.97) 

( )k1kk ffff −β+= +  (4.98) 

Equation (4.96) is nonlinear because the coefficient matrices are functions of the dependent 
variables. The solution of the moisture-transfer equation is also subject to mass balance errors 
caused by the highly nonlinear relationship between the moisture content and the matric potential 
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(Milly 1985 and Celia et al. 1990). This is especially a problem with the infiltration into an 
initially dry soil. According to Celia et al., diagonalizing or lumping the capacitance matrix is 
necessary to ensure a non-oscillatory and mass conservative solution. Diagonalization has also 
been shown to reduce the number of iterations to convergence. Diagonalization is accomplished 
by summing the total capacitance for the element and employing a scaled distribution of this 
capacitance to the diagonal nodes.  

Solution methods of the nonlinear equations include the Picard iteration, the Newton-Raphson 
method, and the Predictor-Corrector methods (Istok 1989, Celia et al. 1990, and Hampton 1989). 
The Newton-Raphson method produces a non-symmetric tangent conductance matrix, which is 
computationally difficult and time consuming to deal with. The Predictor-Corrector method is 
used successfully by Hampton, but it was not selected for this work. The Picard iteration can 
introduce convergence problems for equations where the coefficients are sensitive to changes in 
the dependent variables; therefore, a modified Picard iteration is often used for soil-moisture 
transfer problems (Istok 1989). Both the Picard and the modified Picard iteration were tried in 
GHAMT and only the modified Picard iteration was successful. The Picard iteration is 
essentially a substitution method, using the values calculated from the previous iteration as an 
estimation in the present iteration until convergence is reached. In the modified Picard method, a 
residual vector is calculated as 
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Then the following system of equations is solved for i
k∆U . 
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The new values of U for time step k and iteration i are then calculated as 
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The value of the relaxation factor ϖ is determined by experience. For this work, a relaxation 
factor of  ϖ = 1.0 worked best. For the first iteration at time step k, the values for 1i

k
−U  are taken 

from the previous time step. Convergence is defined as  

ε<
U
∆UMAX  (4.102) 

The convergence criteria, ε, is typically set at 0.001. If convergence is not reached, new 
coefficient matrices are assembled, a new residual is determined by Eq. (4.99), and the process is 
repeated. The maximum number of iterations must be set by the user; for most of the simulations 
in this work, only 20 iterations were allowed. 

The conductance and capacitance matrices are sparse, but the exact form is dependent on the 
mesh and the numbering of the elemental nodes. A modified skyline storage technique is used to 
reduce the storage requirements. The solution of Eq. (4.101) is carried out using a Gaussian 
elimination routine written to take advantage of the matrix structures. The mesh may be 
generated by hand or by any of several mesh-generation packages available. For the work here, 
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GEOMPACK90 (Joe 1999) and a program based on MESH.F from Thompson (1999) were used. 
To reduce the bandwidth, a program based on NEWNUM.F from Thompson (1999) was used.  

4.6. Spatial and Temporal Discretization 

The errors associated with the finite element and time approximations depend on the spatial and 
temporal discretizations used for the solutions. As the fineness of the mesh is improved and the 
time step is reduced, the errors diminish and the approximation approaches the true answer; 
however, as the discretizations are reduced, the computation time increases. The mathematical 
stability of the solution is also related to the time step. The implicit solution method is inherently 
numerically stable; however, the solution can become mathematically unstable by the 
propagation of errors brought about by an integration time step that is too large. 

The required discretization depends on the problem being modeled and the type of boundary 
conditions. In regions with steady or slowly varying conditions, the mesh can be coarser than in 
regions with large gradients and rapidly changing conditions. For the ground-heat-transfer 
problems, the mesh must be finer near the ground surface and the building; away from these 
areas, it can be coarse. To the appropriate discretization, the program was run numerous times, 
refining the mesh until the solution was independent of the mesh size or until the desired 
accuracy was obtained.  

Simulations were carried out with a 0.1-m-wide by 1.0-m-tall column of Bighorn sandy loam for 
400 hours. The region was initialized with T = 10oC and ψ = -3.0 m.  The side boundary 
conditions were zero heat and moisture fluxes; the bottom boundary was T = 10oC and ψ = -3.0 
m; the top boundary conditions were Tdb = 25oC, Tdp = 22oC, uwind = 2.0 m/s, G = 0.0 W/m2; and 
25 mm of rain was added to the surface during hour 200. The solution is most sensitive to the 
addition of moisture; therefore, these results may be conservative for other cases. Meshes of 
quadrilateral and triangular elements were used with a fixed width of 5 cm and a height varying 
from 0.25 cm to 50 cm. The triangular elements were formed by dividing the quadrilateral 
elements by a diagonal line. The maximum size of the time step that produces accurate and 
stable results depends on the mesh size; the finer the mesh, the smaller the time step must be. 
The time step used during the period when rain is added must be smaller than values used during 
steady-state or slowly varying conditions. The time steps used and the computer run times using 
a 600 Mhz personal computer are listed in Table 4.2. 

The steady-state errors for each case was extremely small: less than 1% for temperatures and 
only slightly exceeding 1% for the moisture with ∆z = 50 cm. The discretization errors, when 
compared to the case with ∆z =0.025 cm in the total heat transfer, temperature, and moisture at 
the surface as a function of the z-discretization are shown in Figures 4.5 and 4.6. The 
temperature error is small for all cases. The errors associated with the triangular elements are 
lower than the quadrilateral elements. From this, starting with a spatial discretization near the 
surface of less than 5 cm and less than or equal to 50 cm near the bottom boundary is 
recommended. The proper time step can be determined from Table 4.2. 
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Table 4.2. Discretization and runtimes for accuracy tests 
Quadrilaterals Triangles 

∆Z 
(cm) Nodes Elem’s ∆tss 

(sec) 
∆train 
(sec) 

Runtime 
(sec) 

Elem’s ∆tss 
(sec) 

∆train 
(sec) 

Runtime 
(sec) 

0.25 1,203 800 300 15 2,936 1,600 300 15 3,044
0.5 603 400 300 30 870 800 600 30 534
1.0 303 200 600 60 177 400 900 60 137
2.0 153 100 600 60 65 200 900 60 55
5.0 63 40 900 60 17 80 1,200 60 16

10.0 33 20 1,800 60 5.4 40 1,800 60 6
20.0 18 10 1,800 60 3.2 20 1,800 60 2.9
50.0 9 4 1,800 120 1.1 8 3,600 120 0.9

 
 
 

Figure 4.5. Errors in temperature, moisture, and total heat flux at the surface 
for quadrilateral elements 
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Figure 4.6. Errors in temperature, moisture, and total heat flux at the surface 
triangular elements 
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Chapter 5: Testing, Verification, and Validation 
 
5.1. Introduction 

Ensuring that algorithms and computer programs produce the expected results is often quite 
difficult, especially for complicated programs. Programs are first tested for errors, ensuring that 
each procedure operates in the expected manner. This is usually accomplished by “unit testing” 
each procedure and module. Then, the program as a whole must be checked to ensure that it 
produces correct results under specific conditions—often called verification and validation 
(McConnell 1993).  

In software development, verification is the process of checking that the program is built 
correctly, and validation is the process of checking that it is the correct program (Sommerville 
1995). A slightly different definition, taken from the International Energy Agency Building 
Energy Simulation Test (BESTEST) diagnostic method (Judkoff and Neymark 1995), is used 
here.  The BESTEST process involves three testing methods: 

1. Analytical verification—the output from the program or subroutine is compared to a known 
analytical solution for isolated physical mechanisms with simple boundary conditions. 

2. Empirical validation—results from the program or subroutines are compared with 
experimental results from a real structure, test cell, or laboratory experiment. 

3. Comparative testing—the program is compared to itself or to other programs. 

Each technique has advantages and disadvantages, and each brings out different problems with 
computer models. Analytical verification tests correct coding of the algorithms with no 
uncertainty in the input; however, the method does not fully test the model and is limited to 
situations in which analytical solutions exist. Empirical validation tests the model against a 
known solution within experimental accuracy, but the detailed measurements required are often 
time consuming and expensive, and there are a limited number of good data sets. Comparative 
testing is quick, allows any portion of the program to be tested, and the uncertainty in the input is 
small, but the accuracy standard is questionable. All of the above methods are used in various 
capacities to confirm the performance of GHAMT. 

5.2. Patch Test 

The patch test is a simple test of finite element programs and consists of testing the program 
using a known solution to a small patch of elements. According to Zienkiewicz and Taylor 
(1994), it is the most important check for finite element codes. It can be a method for assessing 
the convergence, a check of how robust the code is, and a check for correct programming. A 
diagram of the patch test used for this program is shown in Figure 5.1.  
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Figure 5.1. Patch test used to check GHAMT 

The nodes were initialized with a matric potential of -1E5 m and a temperature of 300 K. The 
matric potential was maintained at –1E5 m, and the linear temperature profile of Eq. (5.1) was 
applied at the boundary nodes. This temperature profile results in a temperature of 292.0 K at the 
center node. The program was run with a time step of 1 hour. The test was completed using 
concrete (no moisture interaction), Solar Village clay, and Bighorn sandy loam. With the 
nonporous concrete, the temperature at the middle node converged to 292.0 K in 12 time steps. 
With the Solar Village clay, the center node temperature converged to 292.013 K in 58 steps; and 
with the sandy loam, it converged to 292.014 K in 39 steps. The thermal diffusivity of the soils at 
this low moisture content is about one-third that of the concrete, which explains the faster 
response. The nonlinear behavior of the coupled heat-and-moisture transfer produced the slight 
variation in the temperature at the center node for the soils. 

280z40x20)z,x(T ++=  (5.1) 

 

5.3. Two-Dimensional Heat Conduction Problem 

For the two-dimensional temperature diffusion problem shown in Figure 5.2, an analytic solution 
is easily obtained by using variable separation to solve the steady-state heat conduction equation. 
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The solution to this is shown in Eq. (5.3), where x1 = 1.0, z1 = 2.0, and T1 = 100. 
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Figure 5.2. Two-dimensional heat conduction problem. 

Both GHAMT and GHT2D were verified using this problem. GHAMT has the option of 
modeling non-porous materials adjacent to porous materials, such as a concrete slab on soil. For 
this test case, only a non-porous material was modeled. The problem was initialized with T = 
0.0ºC, and then the boundary condition of T = 100ºC was applied at z = 2.0. 

The numerical solution from GHAMT is compared with the analytic solution in Figure 5.3. The 
numerical solution is nearly identical to the analytic solution after 240 hours with a time step of 1 
hour. 

5.4. One-Dimensional Isothermal Infiltration Problem 

Philip (1957) developed a quasi-analytic solution to the problem of one-dimensional isothermal 
moisture infiltration in a vertical soil column. The governing equation for moisture infiltration in 
terms of the matric potential is  
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Figure 5.3. Temperature contours for the numerical and analytic solutions to 

a two-dimensional heat-conduction problem. 

Philip assumed a semi-infinite medium with uniform initial conditions and constant boundary 
conditions. The solution is a power series in t1/2. Haverkamp et al. (1977) published the solution 
for the problem of vertical infiltration into a column of Yolo light clay in tabular form using 
Philip’s method. The initial conditions were ψ = -6.0 m (θ = 0.2367) and T = 30.0ºC. The 
temperature was chosen to match the temperature at which Moore (1939) measured the soil 
moisture characteristic curve; therefore, there is no correction for temperature in the matric 
potential or the hydraulic conductivity relationships. The boundary conditions were zero 
moisture and heat fluxes on the sides, T = 30.0ºC on the top and bottom, and ψ = -6.0 m on the 
bottom and 0.0 m on the top. A 2.5-m column height was used to simulate the semi-infinite 
medium assumed by Philip. The numerical solution was run with a time step of 10 sec for the 
first 1,000 sec, then increased to 1,000 sec for the remainder of the run. The moisture content as 
a function of depth is plotted for three times against the quasi-analytic solution in Figure 5.4. The 
solution compares very well for each of the times.  
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Figure 5.4. Infiltration in a column of Yolo light clay as predicted by Philip’s 
quasi-analytic solution and GHAMT. 

5.5. Comparison with Field Experimental Results 

To test the heat-and-moisture transfer and the atmospheric boundary condition models, GHAMT 
was compared with experimental data taken at the Solar Energy Applications Laboratory at 
Colorado State University. A data-acquisition system was set up in an open field 10 m away 
from the only building in the area. The ground was covered with patchy wild grasses, which 
were matted down from occasional snowfall. The ground cover was estimated to be 10 cm high. 
Weather data and ground temperatures at the depths shown in Figure 5.5 were measured from 
October 29, 1998, to June 7, 1999. The copper-constantan thermocouples were inserted a 
minimum of 10 cm horizontally into the undisturbed soil of the hole’s wall, which was then 
refilled and packed. The data were scanned every minute, and average values were recorded 
every 15 minutes. Because of problems with logging the solar radiation, this data was not 
reliable; therefore, the solar data, along with the precipitation data, were taken from a weather 
station located approximately 1 km from the site. For the period from April 8 to April 24, the 
data-logging system was down and no data were recorded. To keep a continuous simulation, the 
complete set of weather data was taken from the adjacent station during this period. 
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Figure 5.5. Ground temperature and weather data configuration. 

Hampton (1989) measured the soil’s thermal, hydraulic, and physical properties in this area and 
named it “Solar Village clay.” The soil is composed of 15.8% sand, 40.0% silt, and 44.2% clay. 
The porosity and bulk density were taken from Hampton’s experiments as 0.55 and 1,260 kg/m3. 
The thermal conductivity and thermal heat capacity were estimated using the methods developed 
by de Vries (1966), assuming that the sand content was quartz minerals and that the other soil 
grains had the properties given by de Vries for “other” soil minerals. The soil water retention 
curve and the hydraulic conductivity were approximated using van Genuchten’s (1980) method, 
matching Hampton’s measured data as outlined in Appendix C.  

A simulation was conducted using a 0.2-m-wide by 3.0-m-deep column of Solar Village clay 
with GHAMT. The simulation was conducted from December 28, 1998, to June 8, 1999. This 
represented a period with good data and minor snow cover. The initial conditions for temperature 
were set to match the measured temperatures and linearly interpolated between the 
thermocouples to match the node positions. In this experiment, the moisture was not measured in 
this experiment and therefore had to be approximated. Prior to December 28, a large snowfall 
had just melted, and it was assumed the ground was very wet. The initial condition for the matric 
potential was set at ψ(z) = -0.1 + z*0.05 to simulate near-saturated soil. The boundary conditions 
along the sides were zero heat and moisture fluxes. The lower boundary condition was set with T 
= 10ºC and ψ = -0.25 m. These were considered good representations for this location and soil 
over this time period. The upper boundary was modeled using the measured weather data.  

Assumptions about the surface conditions were ground cover height = 0.1m, ground infrared 
emissivity = 0.9, and ground albedo (solar reflectance) = 0.23, which is representative of average 
crop cover (Shuttleworth 1993). Because of the evaporation and convection terms and the small 
element size at the surface (0.74 cm), the model is very sensitive to variations in the weather 
variables; therefore, a time step of 60 sec was used to avoid instabilities. 
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The weather conditions, along with the measured and predicted surface temperatures for two 
periods, are shown in Figures 5.6 and 5.7. Predicting the surface temperature is very sensitive to 
the atmospheric boundary conditions and is usually too high or too low. The over-predicted 
surface temperatures during the day seem to be caused by a combination of the incident solar 
radiation term and the convection term. Because there was no information on cloud cover, the 
long-wave radiation exchange with the atmosphere was modeled assuming a clear sky. The 
negative effects of this are clearly seen for the periods with substantial precipitation (and hence 
opaque cloud cover) between 1/21 and 1/27 in Figure 5.6 and from 4/28 to 5/2 in Figure 5.7. 
Between 4/28 to 5/2, 12.8 cm of precipitation was measured at the weather station. To see the 
effects of the clouds, the same run was completed with low (h = 2,000 m) opaque clouds for 1 
hour before, during, and 2 hours after any precipitation. The results for the period between 4/27 
and 5/17 are shown in Figure 5.8. The predicted temperature is much closer to the measured 
temperature during the period of heavy rainfall from 4/28 to 5/2. One variable that is not 
modeled is snow cover. There was snow cover insulating the ground between 1/21 and 1/27 
evidenced by the nearly constant surface temperature. The presence of snow cover for short 
periods of time will have little effect on temperatures below 20 cm; however, persistent snow 
cover is an important factor for deep ground temperatures as discussed by Gilpin and Wong 
(1976).  



 57 

Figure 5.6. Weather conditions along with the measured and predicted 
surface temperatures for the period from January 10–30. 
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Figure 5.7. Weather conditions along with the measured and predicted 
surface temperatures for the period from April 27 to May 17. 
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Figure 5.8. Measured and predicted surface temperatures for the period from 
April 27 to May 17 with cloudy skies during the rainy period. 

Figures 5.9 to 5.11 show the measured and predicted temperatures along with the root-mean-
square error at depths of -0.34 m, -0.65 m, and –0.95 m.  The predicted values at –0.34 m and –
0.65 m are very close to the measured temperatures with the root-mean-square error less than 
1.0ºC. The values at –0.95 m are also good, but the error is slightly larger. The growth in the 
error with depth is believed to be caused by inaccurate modeling of the thermal conductivity of 
the frozen soil and not modeling the effect of the snow cover (see Figure 5.6). Another cause 
may be incorrectly estimating the initial conditions for the moisture content. As the ambient 
temperature warms up and the moisture content has time to come to equilibrium, the temperature 
predictions become more accurate. 
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Figure 5.9. Measured and approximated temperatures and the error at z = -
0.34 m. 

Figure 5.10. Measured and approximated temperatures and the error at z = -
0.65 m. 
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Figure 5.11. Measured and approximated temperatures and the error at z = -
0.95 m. 

5.6. Conclusions 

The GHAMT program compares well with analytic solutions for heat conduction and isothermal 
infiltration and with experimental data. Unfortunately, moisture data were not measured during 
the field experiment, which would have been a more decisive validation. These tests are by no 
means conclusive as to the model’s accuracy in all situations. As with all numerical models, 
caution is advised when using them to avoid erroneous results. It is advised to check the results 
against expected behavior and with hand calculations or proven solutions. 

Comparison with the experimental data shows the sensitivity of the results at the surface to the 
atmospheric conditions. Short-term variations in the atmospheric conditions have little effect on 
the predicted soil temperatures below 0.2 m; however, if small inaccuracies at the surface persist, 
the predictions slowly diverge from the actual behavior for simulations longer than a few weeks. 
An example of this was discovered when the model was run without the precipitation input. The 
results at all depths slowly diverged from the measured data because of the slow drying of the 
soil. Another long-term condition that could potentially alter the results is the presence of 
persistent snow cover. Gilpin and Wong (1980) showed how seasonal snow cover acts as a “heat 
valve” with significant effects in cold regions. Ground shading, which is not included in the 
present model, could also substantially affect the solution as shown by Bahnfleth (1989) and 
discussed in Chapter 2.  
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Chapter 6: Results 
 
6.1. Introduction 

This chapter begins with an analysis of the magnitudes of the heat flux terms for a simple one-
dimensional case using GHAMT. Then the effects of moisture, freezing, and water-table depth 
on the heat transfer from a slab-on-grade floor and a basement are studied. An annual simulation 
is completed with hourly data to compare the heat-and-moisture-transfer model with the heat-
transfer model and with the results from a hand calculation method. 

6.2. Comparison of Soil Heat Transfer Terms 

The GHAMT program was verified against experimentally measured ground temperatures in a 
one-dimensional case in Chapter 5. The values of the four heat flux terms from the heat transfer 
equation were also calculated for this case. These heat transfer terms are the following:  (1) heat 
conduction, qcond; (2) latent heat of vapor distillation driven by temperature gradients, qv,∆T; (3) 
latent heat of vapor distillation driven by matric potential gradients, qv,∆Ψ; and (4) liquid 
convection by matric potential gradients and gravity, lq . The heat flux values were calculated in 
the z-direction by Eqs. (6.1) to (6.4) after the governing equations were solved.  
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The thermal conductivity k in Eq. (6.1) is calculated using the de Vries method, which includes 
the effect of the latent heat transfer of vapor distillation. The shape factors N and the coefficients 
were evaluated at the element centroids. The temperatures and matric potentials are the nodal 
point values, and the reference temperature is To = 0.0oC, following the definition of the latent 
heat of vaporization in Eqs. (4.38) and (4.39). 

Figures 6.1 to 6.3 show the heat flux values at z = -0.038 m, -0.35 m, and –0.95 m with positive 
denoting heat flow into the ground. The heat flux of the latent heat of vapor distillation driven by 
matric potential gradients, qv,∆Ψ, was extremely small for all cases and is not included in the 
graphs. The conduction heat transfer is usually the dominant term, except after the large 12.8-cm 
rainfall from 4/28 to 5/2 (see Figure 5.7). Normally, the heat flux by liquid convection is very 
small; however, the large influx of water causes this term to increase to levels that are 
comparable to, or larger than, the conduction term. The heat transfer by vapor distillation cycles 
driven by temperature gradients is very small, which is expected because of the high moisture 
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content and the clay soil. This term becomes more important at lower moisture contents, as can 
be seen in the graph of thermal conductivity for the sandy loam in Figure 3.7.  

Because of the variation in solar gain, the conduction term in Figure 6.1 exhibits sharp peaks 
during the day, and at night, the curves are shallow because the conditions are relatively 
constant.  At the lower depths in Figures 6.2 and 6.3, the diurnal variations are damped out and 
the moisture-influx effect occurs later and lasts longer.  

Figures 6.4 and 6.5 show the same heat flux terms using Bighorn sandy loam instead of the Solar 
Village clay for depths of –0.038 m and –0.35 m. The thermal conductivity of the sandy loam is 
higher, also the heat conduction values are higher. The biggest difference between the two soils 
is in the hydraulic conductivity, which is evident in the magnitude of the liquid convection heat 
transfer. The saturated hydraulic conductivity of the Solar Village clay is 1.5 x 10-6 m/s, and the 
value for the Bighorn sandy loam is 5.0 x 10-5 m/s. For the run times not shown in these graphs, 
the liquid convection term is very small. 

Figure 6.1. Heat flux terms of conduction, vapor distillation driven by 
temperature, and liquid convection at z = -0.038 m for Solar 
Village clay. 
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Figure 6.2. Heat flux terms of conduction, vapor distillation driven by 
temperature, and liquid convection at z = -0.35 m for Solar Village 
clay 

Figure 6.3. Heat flux terms of conduction, vapor distillation driven by 
temperature, and liquid convection at z = -0.95 m for Solar Village 
clay. 
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Figure 6.4. Heat flux terms of conduction, vapor distillation driven by 
temperature, and liquid convection at z = -0.038 m for Bighorn 
sandy loam. 

Figure 6.5. Heat flux terms of conduction, vapor distillation driven by 
temperature, and liquid convection at z = -0.35 m for Bighorn 
sandy loam. 
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6.3. Slab-on-Grade and Basement Heat-Transfer Simulation Parameters 

To determine the effect of moisture added to the ground surface on ground-coupled heat transfer 
from a slab-on-grade and basement, two sets of simulations were conducted. The simulations 
were identical in every way except that one included rain added to the soil surface during the 
simulation. This was completed for a half-width slab-on-grade floor and a half-width basement. 
Simulations were completed with summer and winter conditions, with insulation and without 
insulation, and with Bighorn sandy loam and with Yolo light clay. The geometries and the 
meshes used for the slab-on-grade and basement problems are shown in Figures 6.6 and 6.7. 
Both meshes consist of three-node triangles.  

The boundary conditions along the sides were zero heat and moisture fluxes. The bottom 
boundary was maintained at ψ = 0.0 m (i.e. saturated) and T = 10°C. The air temperature above 
the floor was 20°C with the convective heat-transfer coefficient for the floor equal to 6.0 
W/m2⋅K and 8.3 W/m2⋅K for the basement wall. The ground surface boundary was assumed to 
have had 10-cm-high vegetation, a long-wave emittance of 0.9, and a reflectance of 0.23. 

The material properties used in the simulations are shown in Table 6.1. The insulated cases 
included 5 cm of insulation under the entire floor and along the outside of the foundation wall 
and 2 cm of insulation separating the floor from the foundation or basement wall. Gravel under 
the slab was simulated as a heat conduction only material, which will introduce a small error, but 
gravel drains very well and contains very little moisture. 

Table 6.1.  Material Properties Used for Ground-Heat-Transfer Simulations. 
Material Thickness ρ k Cp 

 (cm) (kg/m3) (W/m⋅K) (J/kg⋅K) 
concrete floor1 10 2,400 1.5 1,000 
concrete wall1 20 2,400 1.5 1,000 
gravel2 15 2,000 2.0 812 
insulation1 5 40 0.029 1.21 

1 ASHRAE Handbook of Fundamentals (1997) 
2 Kersten (1949) 

The initial conditions for the summer simulations were obtained by starting with linear 
temperature and moisture distributions in depth and running the program for a 3-year period with 
sinusoidal varying weather conditions and 25 mm of rain added once a week to keep the surface 
from becoming completely dry. It is worth noting that both the temperature and moisture fields 
took 2 to 3 years to reach a quasi-steady-state distribution, which agrees with the predictions by 
Lachenbruch (1957) and the measurements by Trethowen and Delsante (1998). The initial 
conditions for the winter simulations started with the results at the end of the 3-year summer run 
and ran for one more year with the winter 1 conditions from Table 6.2.  
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Figure 6.6. Mesh and boundary conditions used for the slab-on-grade 
simulations. 
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Figure 6.7. Mesh and boundary conditions used for the basement 
simulations. 

-1
0-8-6-4-202

0
5

10
15

42
8

no
de

s,
73

2
el

em
en

ts

T
=

10
C

X
(m

)

Z
(m

)

ψ
=

0.
0

m

q
=

0.
0

u
=

0.
0

q
=

0.
0

u
=

0.
0

h
=

6.
0

W
/m

2
K

Zv
eg

=
10

cm
em

is
=

0.
9

re
f=

0.
23

T
=

20
.0

C

h
=

8.
3

W
/m

2
K



 69 

The daily weather conditions were simulated using Eqs. (6.5) to (6.7) and the data in Table 6.2 
for solar radiation, temperature, and wind speed. The solar radiation was set to zero when the 
values from Eq. (6.5) were negative. 

))2124t2(sin(GGG am −π+=  (6.5) 

))3224t2(sin(TTT am −π+=  (6.6) 

))2124t6(sin(uuu am −π+=  (6.7) 

Table 6.2. Weather Parameters Used for Ground Heat Transfer Simulations. 
Variable Units Summer Winter 1 Winter 2 

Gm Wh/m2 0.0 0.0 0.0 
Ga Wh/m2 900.0 450.0 200.0 
Tdry bulb-m °C 15 0.0 -10.0 
Tdry bulb-a °C 10 5.0 5.0 
Tdewpoint-m °C 7.5 -1.0 -12.0 
Tdewpoint-a °C 5.0 4.0 4.0 
um m/s 4.0 4.0 4.0 
ua m/s 2.0 2.0 2.0 
precip-slab 
precip-basement 

mm 25.0 
50.0 

25.0 
25.0 

25.0 
50.0 

 

The winter 1 weather parameters in Table 6.2 were used during the 1-year setup run for the 
initial conditions, and the winter 2 values were used with the slab-on-grade and basement 
simulations. All of the summer simulations were 16 weeks (112 days), and the winter 
simulations were 8 weeks (56 days).  

6.4. Effect of Surface Moisture on Slab-on-Grade Heat Transfer  

The slab-on-grade simulation cases are listed in Table 6.3. Twenty-five mm of rain was added on 
days 7 and 14 between 6 and 7 a.m. for the rainy cases. The heat flux from the slab-on-grade 
floor was first calculated at the element centroids and then at the nodal points by an area-
weighted average.  

Figure 6.8  shows the heat flux variation across the floor at 12:00 p.m. on day 14 with the sandy 
loam soil for the uninsulated-dry, uninsulated-rain, and insulated-rain cases.  Adding rain has 
only a small effect on the uninsulated floor, and then only near the perimeter. The effect of the 
insulation is substantial for the first 2 m in from the outside edge and then diminishes towards 
the center of the floor. However, at the center of the floor, the insulation still reduces the heat 
loss by one-third, which may be significant depending on the building, the location, and the 
heating fuel costs. 

For the summer cases (1–8), Figures 6.9 and 6.10 show the hourly total heat loss across the slab 
floor per unit of depth. Adding rain on days 7 and 14 has an obvious effect on the heat transfer 
from the floor for all cases. The average magnitude of the heat transfer from the uninsulated 
floors is about twice the value from that of the insulated floors, and the daily variation is about 



 70 

100 times larger. The general downward slope of the graphs is due to the surface soil slowly 
drying out, which lowers the thermal conductivity. For each case, the increase in heat loss over 
the 112 days caused by adding rain is: 1.2% for the insulated sandy loam, 3.1% for the 
uninsulated sandy loam, 0.4% for the insulated Yolo light clay, and 1.2% for the uninsulated 
Yolo light clay. 

Table 6.3 Cases to Show the Effects of Surface Moisture on Ground-Coupled Heat 
Transfer from a Slab-on-Grade. 

Case Code Description 
1 ssrfs slab, summer, rain, full insulation, sandy loam 
2 ssdfs slab, summer, dry, full insulation, sandy loam 
3 ssrns slab, summer, rain, no insulation, sandy loam 
4 ssdns slab, summer, dry, no insulation, sandy loam 
5 ssrfc slab, summer, rain, full insulation, Yolo light clay 
6 ssdfc slab, summer, dry, full insulation, Yolo light clay 
7 ssrnc slab, summer, rain, no insulation, Yolo light clay 
8 ssdnc slab, summer, dry, no insulation, Yolo light clay 
9 swrfs slab, winter 2, rain, full insulation, sandy loam 

10 swdfs slab, winter 2, dry, full insulation, sandy loam 
11 swrns slab, winter 2, rain, no insulation, sandy loam 
12 swdns slab, winter 2, dry, no insulation, sandy loam 
13 swrnc slab, winter 2, rain, no insulation, Yolo light clay 
14 swdnc slab, winter 2, dry, no insulation, Yolo light clay 

Figure 6.8. Heat flux across the slab-on-grade floor at 12:00 on day 14 for the 
sandy loam soil and winter conditions. 
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Figure 6.9. Hourly total heat loss for summer conditions from the insulated 
slab-on-grade for a sandy loam and a Yolo light clay for dry 
conditions and with 25 mm of rain added on days 7 and 14. 

Figure 6.10. Hourly heat loss for summer conditions from the uninsulated 
slab-on-grade for a sandy loam and a Yolo light clay for dry 
conditions and with 25 mm of rain added on days 7 and 14. 
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A comparison of the heat loss for the rainy and dry cases for the uninsulated winter run with 
sandy loam soil is shown in Figure 6.11. The effect of the moisture addition is again obvious, but 
it is short-lived, and the two solutions converge. The percentage of change from the dry to the 
rainy cases is much smaller for the winter weather than for the summer weather. It is only 0.1% 
for the insulated sandy loam and 0.2% for the uninsulated sandy loam. 

Figure 6.11. Hourly total heat loss for winter conditions from the uninsulated 
slab-on-grade with a sandy loam for the dry case and the case 
with 25 mm of rain added on days 7 and 14. 
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surface conditions, but is closely coupled to conditions in the deep ground below the building. 
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Table 6.4 Cases to Show Effects of Surface Moisture on Ground-Coupled Heat 
Transfer from Basements. 

Case Code Description 
15 bsrfs basement, summer, rain, full insulation, sandy loam 
16 bsdfs basement, summer, dry, full insulation, sandy loam 
17 bsrns basement, summer, rain, no insulation, sandy loam 
18 bsdns basement, summer, dry, no insulation, sandy loam 
19 bwrfs basement, winter, rain, full insulation, sandy loam 
20 bwdfs basement, winter, dry, full insulation, sandy loam 
21 bwrns basement, winter, rain, no insulation, sandy loam 
22 bwdns basement, winter, dry, no insulation, sandy loam 

 
For the summer conditions, the rain’s effect on heat loss from the floor was small: the heat loss 
increased by less than 0.4% for the insulated and uninsulated configurations. The heat loss from 
the basement wall increased by 5.7% and 6.4% for the insulated and uninsulated cases, 
respectively. Figure 6.12 shows the daily wall heat loss for the four summer cases. Both the 
uninsulated and insulated walls show a jump in heat loss when rain is added and a slow 
convergence with the dry case. The gradual decrease in heat loss is caused by the soil drying out, 
which lowers the thermal conductivity. The insulation has a large effect on the overall results. 
The heat losses for the insulated basements for both the rainy and dry simulations were reduced 
by 50% for the floor, 66% for the wall, and 55% for the total. The wall insulation is slightly more 
effective for summer conditions and a 10-m water table depth. 

Figure 6.12. Daily basement wall heat losses for summer conditions over 112 
days.  
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The winter cases exhibited very little change when rain was added to the surface. In both the 
insulated and uninsulated cases, there was less than a 0.1% increase in the heat loss when rain 
was added. However, two results should be pointed out. First, the insulation on the basement 
wall is very effective in the winter cases, reducing the wall heat loss by over 73% and the total 
heat loss by 66%. Second, the ratio of heat loss from the floor and the walls changes with the 
seasons. In the summer, approximately 70% of the heat loss is from the floor, but in the winter, it 
is only about 30% of the total.  

The insulation configuration has a significant influence on the behavior of the heat transfer inside 
the basement wall. Figures 6.13 and 6.14 show the heat flux calculated at the wall surface nodes 
in the x-direction for the rainy and dry cases and for the insulated and uninsulated cases. The 
heat loss for the uninsulated case is, of course, greater, and there is actually some heat gain late 
in the day around 6 p.m. There is very little variation in heat loss in both cases from the walls 
between the floor and 0.7 m below the ground surface. 

Figures 6.15 and 6.16 show a similar set of graphs for the heat flux in the z-direction. The rain 
and dry results are nearly identical for the insulated case, so only the rainy case is shown in 
Figure 6.16. Two interesting points here are the large variation in the uninsulated case over the 
day near the top of the wall and the large heat flow in the negative z-direction in the insulated 
wall case. For the insulated wall and floor, there is a thermal bridge down the wall through the 
footing to the ground. Because the footing must support the weight of the building, it is difficult 
to insulate against this loss. The vertical heat loss from the bottom of the wall also causes a 
larger temperature gradient in the x-direction around 0.4 m above the floor, as seen by the knee 
in Figure 6.14. 
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Figure 6.13. Basement wall heat flux in the x-direction for the uninsulated wall 
and summer conditions on day 8 of the simulation. 

Figure 6.14. Basement wall heat flux in the x-direction for the insulated wall 
and summer conditions on day 8 of the simulation. 
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Figure 6.15. Basement wall heat flux in the z-direction for the uninsulated wall 
and summer conditions on day 8 of the simulation. 

Figure 6.16. Basement wall heat flux in the z-direction for the insulated wall 
and summer conditions on day 8 of the simulation. 
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6.6. Effect of Groundwater Depth on Heat Transfer From a Basement 

Groundwater depth can have a large influence on the heat transfer from buildings, especially 
those with basements. Groundwater is usually modeled as a constant temperature boundary, 
which neglects the effect of the moisture. With a heat-and-moisture-transfer model, the 
groundwater can be modeled as a saturated boundary, which provides a source of moisture for 
the soil to draw from. To show the effects of groundwater depth on the heat transfer from a 
basement, the cases listed in Table 6.4 with no rain added were run with water-table depths of 5 
m and 3 m. The simulations from Section 6.5 assumed a water-table depth of 10 m at a 
temperature of 10oC. For the case with a water table at 5 m, the summer and winter temperatures 
of this boundary were 10°C and 7°C.  For the case with a water table at 3 m, the summer and 
winter temperatures were 10°C and 5°C, respectively. 

The average daily wall heat loss, as a function of the groundwater depth below the basement 
floor, is shown in Figure 6.17. The water depth only has a small effect on the heat loss from the 
wall since it is more closely tied to the surface conditions. The most significant feature of this 
graph is the increase in the heat loss from the uninsulated wall in the winter, demonstrating the 
importance of insulating basement walls in cold climates.  

Figure 6.18 shows the average daily heat loss from the basement floor with the depth of the 
water below the floor. The heat loss increases dramatically for the uninsulated cases as the 
groundwater nears the floor, regardless of the season. The affect on the insulated floors is very 
small. For uninsulated basement floors, uncertainty in the groundwater depth appears to be more 
important than the temperature of the groundwater when the water table is close to the floor.  



 78 

Figure 6.17. Average daily basement wall heat loss as a function of 
groundwater depth below the basement floor. 

Figure 6.18. Average daily basement floor heat loss as a function of 
groundwater depth below the basement floor. 
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Figure 6.19 shows the temperature contours for the three groundwater depths on day 46 of the 
winter cases. The contour plots of the effective soil thermal conductivity, as calculated by the de 
Vries method (1966) (see Chapter 3), are shown in Figure 6.20. From these contour plots, it is 
easy to see why the groundwater depth can have a large impact on basement floor heat losses. 
The temperature gradient immediately beneath the basement floor for the 3-m case is roughly 8 
times the value of the 10-m case, and the effective thermal conductivity of the soil is 
approximately 1.3 times larger due to the higher soil moisture content. The combination of these 
two effects produces the dramatic increase in the heat loss from the basement floor. The effect on 
the heat loss from the basement wall is much smaller, because the basement wall heat loss is 
driven more by the surface conditions than by the deep ground conditions. 

6.7. Effect of Buildings on the Soil Moisture Field 

A contour plot of the soil volumetric moisture content surrounding an uninsulated basement for 
the summer case with ground water at 10 m is presented in Figure 6.21. This plot shows that the 
presence of the basement has little affect on the moisture distribution in the soil. All of the cases 
simulated in this work exhibited a similar behavior, demonstrating that a change in soil moisture 
content, and thus a change in thermal conductivity with depth around a building, may be 
approximated by a one-dimensional column of soil, which is much easier to simulate. The 
variation in thermal conductivity with depth can be used in a heat-transfer-only program, which 
is much faster, to approximate the ground-coupled heat transfer for complicated geometries. 
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Figure 6.19. Temperature contours (°C) for uninsulated basements on day 46 
of simulations with winter conditions, sandy loam soil, and 
ground water depths of -10 m, -5 m, and -3 m. 
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Figure 6.20. Contours of the effective thermal conductivity (W/m⋅K) for an 
uninsulated basement on day 46 of simulations with winter 
conditions, sandy loam soil, and ground water depths of -10 m, -5 
m, and -3 m. 
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Figure 6.21. Contours of the soil volumetric moisture content for an 
uninsulated basement. 
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the domain were modeled as impermeable adiabatic surfaces. The ground surface had a 
vegetation height of zveg = 10 cm, an infrared emissivity of ε = 0.9, and a reflectivity of ρ = 0.23. 
The weather data was measured in 1999 in Fort Collins, Colorado. Cloud cover information was 
not included in this data set; therefore, opaque cloud cover was only modeled during hours with 
precipitation, then tapered off for 2 hours following the rain. The weather data set used here 
includes the data set used in Section 5.5 for the model validation. To obtain the initial conditions, 
the models were run for 1 year starting with the temperature and moisture distributions from the 
winter cases run in Section 6.6. For both models, the time step was 30 minutes, except during 
periods of rain, where GHAMT used a time step of 1 minute to avoid instabilities. The runtimes 
for annual simulations on a Pentium III, 600 Mhz computer were 3.5 hours for GHAMT and 10 
minutes for GHT2D. Both models could be faster with some code optimization, but the heat-and-
moisture transfer model is obviously much more computationally intensive. 

The annual results from the two models are listed in Table 6.5. Seven simulations were 
completed with the heat-conduction model using various soil thermal conductivity values and 
evapotranspiration levels. The evapotranspiration level is determined by the ratio of the actual 
evapotranspiration and the potential evapotranspiration, Kevap. Potential evapotranspiration is the 
maximum value, which occurs when the surface remains saturated and the vapor pressure is at 
saturation. This situation only occurs when the surface is near saturation. 

The first case uses the soil thermal conductivity at the critical moisture content θk = 0.09, which 
is approximately the wilting point of this soil and is the value at the knee in the thermal 
conductivity curve shown in Figure C.4. The total heat transfer was 13.7% below the results 
from the heat-and-moisture transfer model. To improve these results, a second thermal 
conductivity value was estimated by comparing the total heat transfer from the first heat transfer 
case with the results from the heat-and-moisture transfer model. Assuming the heat-and-moisture 
transfer model provides the benchmark value, a rough estimate of the thermal conductivity can 
be calculated from:  
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The results from the second case were much better. However, most of the improvement was in 
predicting the floor heat loss; the wall heat loss did not improve as much.  

A common practice is to use seasonal soil thermal conductivity values to represent the seasonal 
change in soil moisture content. The third case does this with a summer value of ksum = 2.2 
W/m⋅K and a winter value of kwin = 2.03 W/m⋅K. Again, this improved the results for the floor 
heat loss but not for the wall value. Another frequently used technique is to vary the soil thermal 
conductivity with soil depth. The fourth case used a thermal conductivity value of ktop = 2.03 
W/m⋅K for the soil above the basement floor and kdeep = 2.1 W/m⋅K for the soil below the 
basement floor level. This improves the prediction of the floor heat loss but, again, does not 
improve the wall heat-loss prediction. The value of the soil thermal conductivity does not have a 
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strong effect on the heat loss predictions from the basement wall. One cause for this is the effect 
of evapotranspiration on the surface temperature.  

The last three cases investigate the effect of evapotranspiration. The fifth and sixth cases use a 
soil thermal conductivity of k = 1.75 W/m⋅K and evapotranspiration ratios of 1.0 and 0.5. The 
wall heat loss with potential evapotranspiration is greater than the value from the heat-and-
moisture transfer model by 11.2%, and the floor heat loss is only slightly improved over the 
previous cases. When the evapotranspiration is half the potential value, the wall heat loss is only 
1% more than the heat-and-moisture transfer model value. The last case attempts to model the 
physical effects occurring at the wall and the floor by varying the thermal conductivity with 
depth and using an evapotranspiration ratio of 0.5. The two soil thermal conductivity values were 
chosen from the results of the heat-and-moisture transfer model as the approximate average of 
the effective soil thermal conductivity in the regions near the wall and the floor. This 
combination produced results that agree with the heat-and-moisture transfer model very well, 
differing by only 1.2% for the floor, 2.4% for the wall, and 1.6% overall. 

Table 6.5. Annual Heat Loss for a Half-Width Basement from GHAMT and GHT2D 
per Unit Length of Perimeter. 

Annual Heat Loss Soil Thermal 
Conductivity Floor Wall Total 

W/m⋅K 
Kevap MJ/m % 

diff 
MJ/m % diff MJ/m % diff 

Heat & moisture model n/a 1,203.4 n/a 526.7 n/a 1,730.0 n/a
k = 1.75 0.0 1,045.1 -13.2 448.2 -14.9 1,493.3 -13.7
k = 2.03 0.0 1,171.1 -2.7 480.7 -8.7 1,651.8 -4.5
ksum = 2.2, kwin = 2.03 0.0 1,196.4 -0.6 487.1 -7.5 1,683.5 -2.7
ktop = 2.03, kdeep = 2.1 0.0 1,200.8 -0.2 481.3 -8.6 1,682.1 -2.8
k = 1.75 1.0 1,075.3 -10.6 585.9 11.2 1,661.2 -4.0
k = 1.75 0.5 1,064.3 -11.6 532.0 1.0 1,596.3 -7.7
ktop = 1.75, kdeep = 2.1 0.5 1,218.4 1.2 539.3 2.4 1,757.7 1.6

 

To examine the seasonal variations, the daily heat loss for each case is graphed in Figures 6.22 to 
6.24. The graph of wall heat loss in Figure 6.22 illustrates the effect of evapotranspiration, which 
peaks in the summer as expected. The first case, with no evapotranspiration, predicts a small heat 
gain in the summer and closely models the winter heat loss; the case with Kevap = 1.0 over-
predicts the heat loss; and the case with Kevap = 0.5 correctly predicts the heat loss in the summer, 
but slightly over-predicts the heat loss in the winter. Notice that the case with the increased soil 
thermal conductivity and Kevap = 0.0 exhibits similar behavior in the summer as the case with ksoil 
= 1.75 W/m⋅K, showing the importance of modeling the evapotranspiration effects. 

The heat loss from the floor is shown in Figure 6.23. The case with seasonal thermal 
conductivities matched the annual floor heat loss predicted by the heat-and-moisture transfer 
model very closely, but did not match the daily variations well. The step changes in the soil 
thermal conductivity produced corresponding step changes in the daily heat loss. A much better 
result was obtained by increasing the thermal conductivity of the soil beneath the basement floor. 
The soil properties at this depth do not change appreciably with the seasonal changes at the 
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surface. A large influx of water can penetrate to this depth, but the effect is small, as can be seen 
by the small bump in the heat-and-moisture transfer model results around day 125 in Figure 6.23. 

The total heat loss in Figure 6.24 shows that accurate results can be obtained with the heat 
transfer model by using a soil thermal conductivity that varies with depth and by estimating the 
correct amount of evapotranspiration. Estimating the amount of evapotranspiration can be 
difficult. The amount of evapotranspiration will be close to the potential value if the ground is 
kept moist all of the time. If the soil is bare and dry, then there will be very little 
evapotranspiration. Selecting a value halfway between is a compromise that works very well for 
the situations studied in this report. If there is a large change in the evapotranspiration between 
summer and winter, it may be better to use a seasonal value of Kevap; however, the winter 
evapotranspiration is small due to the colder temperatures and lower solar radiation, so the error 
of using a constant Kevap is small. 

This comparison shows that the heat-conduction model can perform very well if the correct soil 
thermal conductivity value is known and if the effects of evapotranspiration are included. 
Classifying the soil and its properties is a weakness in both models; however, the heat-and-
moisture transfer model can provide more insight into the effects of temperature and moisture 
content. With a rough knowledge of the soil composition, a user could select one of the five soil 
types in GHAMT and determine an effective soil thermal conductivity to use with a heat-transfer 
model. This thermal conductivity value can then be used with more confidence on complicated 
geometries with the heat-transfer program. Another approach would be to use GHAMT to 
develop guidelines for selecting a thermal conductivity for various soils and locations. 

Figure 6.22. Daily basement-wall heat loss predicted by GHAMT and GHT2D. 
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Figure 6.23. Daily basement-floor heat loss predicted by GHAMT and GHT2D. 

Figure 6.24. Daily total basement heat loss predicted by GHAMT and GHT2D. 
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6.10. Comparison of the Heat Transfer Model with the Mitalas Method 

The monthly heat loss values calculated by the Mitalas method (1982 and 1987) were compared 
to the heat loss from the two-dimensional heat transfer model, GHT2D, for the basement 
geometry shown in Figure 6.7. Simulations were completed for a basement with no insulation 
and with R = 1.74 m2·K/W insulation over the entire height of the wall. The soil thermal 
conductivity was 1.8 W/m·K for the portion above the basement floor and 2.0 W/m·K below the 
basement floor. Calculations were completed with evapotranspiration ratios of Kevap = 0.5 and 
Kevap = 1.0. The weather data for Fort Collins used in the previous section was used again for this 
simulation. The basement air temperature was held constant at 20°C.  

Mitalas developed a series of shape factors called Basement Heat Loss Factors for various 
geometries and soil conditions based on hundreds of two- and three-dimensional simulations. 
There are two types of shape factors: one for the annual mean value of the heat loss, and one for 
the periodic component of the heat loss. The mean value of the heat loss is related to the mean 
indoor and outdoor air-temperature difference, and the periodic value is related to the amplitude 
of the first harmonic of the annual outdoor air temperature.  These temperatures were determined 
with GHT2D to be 10°C and 12°C, respectively. The Mitalas method uses corner correction 
factors to adjust the two-dimensional calculated values for the three-dimensional effects of heat 
transfer from a real basement. These correction factors were not used for this comparison, and 
the heat transfer values were calculated per meter of perimeter. 

The annual heat-loss predictions for each case are shown in Table 6.6. The values differ by up to 
32%, with the largest difference in the wall heat loss. The difference in the total heat-loss 
prediction varies from 11.4% to 18.0%. It is difficult to determine the source of the 
disagreements, because Mitalas does not give many details on the numerical model and the 
assumptions used to develop the basement heat loss factors. We assume that some of the 
differences arise from the treatment of the ground surface boundary condition since this is the 
most complicated and was probably greatly simplified in the Mitalas models. 

Table 6.6. Annual Heat Loss for a Half-Width Basement from the Mitalas Method and 
GHT2D per Unit Length of Perimeter. 

Annual Heat Loss 
Floor Wall Total Model Kevap 

MJ/m % diff MJ/m % diff MJ/m % diff 
Mitalas (uninsulated) n/a 750 n/a 1,122 n/a 1,875 n/a 
GHT2D (uninsulated) 0.5 649 -13.5 889 -20.8 1,538 -18.  
GHT2D (uninsulated) 1.0 673 -10.3 989 -11.9 1,662 -11.4 

Mitalas (insulated) n/a 765 n/a 407 n/a 1,172 n/a 
GHT2D (insulated) 0.5 687 -10.2 278 -31.7 966 -17.6 
GHT2D (insulated) 1.0 713 - 6.8 309 -24.1 1,022 -12.8 

 

The average daily heat loss on a monthly basis for the insulated case and Kevap = 1.0 are shown in 
Figures 6.25 to 6.27. Both methods agree very well on the floor heat loss. The Mitalas model 
shows a higher wall heat loss in the winter and very similar values for the summer. The 
evapotranspiration in GHT2D is much smaller in the winter, which limits the heat transfer at the 
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surface and reduces the heat transfer from the basement wall. The details of the ground surface 
energy balance are not given in the Mitalas model, so it is impossible to know what assumptions 
were made at this boundary. The two methods do exhibit very similar seasonal behavior.  

Figure 6.25. Daily average floor heat loss for a basement with an insulated 
wall from the Mitalas method and GHT2D. 

Figure 6.26. Daily average wall heat loss for a basement with an insulated wall 
from the Mitalas method and GHT2D. 
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Figure 6.27. Daily average total heat loss for a basement with an insulated wall 
from the Mitalas method and GHT2D. 

6.11. Comparison of the Heat Transfer Model with the ASHRAE Method 

The predicted heat loss for a basement using the method in the ASHRAE Handbook of 
Fundamentals (1997) was compared with predictions using GHT2D. The purpose of this 
comparison was to test the monthly heat-loss values predicted by the ASHRAE method with the 
results from a numerical simulation. The ASHRAE method is limited to a soil thermal 
conductivity of k = 1.38 W/m·K; therefore, the previous results cannot be directly compared. The 
basement geometry in Figure 6.7 was used with wall insulation (R = 1.47 m2·K/W) extending 1.2 
m down from the top. GHT2D was run with the Fort Collins weather data used in Section 6.9, a 
soil thermal conductivity of k = 1.38 W/m·K, and an evaporation ratio of Kevap = 0.5. 

The total monthly heat losses predicted by each case are shown in Figure 6.28, which shows that 
the two models agree fairly well in the spring and summer, but not very well in the fall and 
winter. The total heat loss for the year from the ASHRAE method is 22% lower than the 
prediction from GHT2D. A comparison of the predicted wall and floor heat losses is shown in 
Figures 6.29 and 6.30. The ASHRAE method predicts 68% higher wall heat losses and 20% 
lower floor heat losses. This confirms claims by other researchers that the ASHRAE method 
does not properly account for heat losses to the deep ground and shows that the method over-
predicts the heat loss to the ground surface.  

The ASHRAE method is based on the work of Latta and Boileau (1969), which is a rough 
approximation based on steady-state calculations. They assumed that the heat loss from a 
basement wall could be approximated by the heat conduction calculated along a circular path 
from the wall to the ground surface. They further assumed that “the average rate of heat loss 
through the floor may be taken as equal to that from a point located one quarter of the basement 
width from the side wall” to the ground surface. The mean ground-surface design temperature is 
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estimated by subtracting the appropriate amplitude for the location from the mean air 
temperature. This approximation depends only on the mean ambient temperature, wall insulation 
levels, and basement depth. Variations in the surface conditions such as solar gain, wind, and 
moisture are not accounted for, which explains why the predicted wall heat losses are much 
higher in this case. In addition, vertical heat transfer in the basement wall can be significant, as 
shown in Figures 6.15 and 6.16. Floor heat losses for a full basement are more closely tied with 
the deep-ground conditions than the surface conditions, as was shown in Sections 6.5 and 6.6. 
From this comparison, the ASHRAE method should be used with caution. 

Figure 6.28. Monthly basement heat loss predicted by the ASHRAE method 
and by GHT2D for Fort Collins weather data. 
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Figure 6.29. Monthly basement-wall heat loss predicted by the ASHRAE 
method and by GHT2D for Fort Collins weather data. 

Figure 6.30. Monthly basement-floor heat loss predicted by the ASHRAE 
method and by GHT2D for Fort Collins weather data. 
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Chapter 7: Conclusions and Recommendations 
 
7.1. Conclusions from Research 

A two-dimensional heat-and-moisture transfer program, GHAMT, and a two-dimensional heat-
conduction program, GHT2D, were developed to study the ground-coupled heat transfer from 
buildings. They were created to address the following issues: (1) study the effects of soil 
moisture content on the thermal properties and what effect this has on the heat transfer from 
ground-coupled buildings; (2) accurately model the surface energy and moisture balances; (3) 
study the effects of water table depths on ground-coupled heat transfer; and (4) determine if the 
heat-transfer model can simulate the effects of moisture predicted by the heat-and-moisture 
transfer model. 

Many insights were gained from the research performed during this project. Soil thermal and 
moisture properties are strongly dependent on the type of soil and the moisture content. Soil 
thermal conductivity is the most important parameter in determining the ground-coupled heat 
transfer and can change by a factor of ten with moisture content; however, the soil moisture 
content around buildings varies slightly except at the surface, where the soil can change from 
saturated to dry on a regular basis. The equations for soil thermal conductivity developed by de 
Vries (1966) can account for the changes in moisture content and the heat transfer associated 
with the evaporation-condensation cycles within the soil pores. The dominant term in the heat-
transfer equation is the conduction term, except when there is bulk liquid flow in the soil, such as 
ground water flow, or for a brief period following a large influx of moisture at the surface, in 
which case the convective term can be the largest.  

Freezing can have a significant impact on the soil thermal conductivity and the soil moisture 
behavior. In the case where the soil freezes and stays frozen, the simple freezing model used in 
this work is adequate and predicts a small effect due to freezing. The case of cyclic freezing and 
thawing is more difficult because of the various types of ice formation and the complex soil 
moisture behavior at the freezing front. A more detailed model is required to accurately simulate 
these physical processes.   

The GHAMT program was used to investigate the effects of moisture added to the ground 
surface on the heat transfer from a slab-on-grade and from a basement. For an uninsulated slab-
on-grade with summer weather conditions, the heat loss increased 3.1% with a sandy loam and 
1.2% with Yolo light clay when moisture was added. For the insulated slab-on-grade cases, the 
effect of the added moisture was less than 1%. For the basement floor, the effect of surface 
moisture on the heat loss was negligible; however, it increased the heat loss from the basement 
wall by around 6% for the insulated and uninsulated cases for summer conditions and sandy 
loam soil. The changes for the winter cases were very small for all configurations. 

The effect of the groundwater depth on heat loss from a basement was shown to be significant 
for uninsulated basement floors. The heat loss from the uninsulated floor increased by 
approximately six times when the water-table depth was changed from 10 m to 3 m, regardless 
of the season. The heat loss for the insulated floors was roughly double when changing from the 
10-m depth to the 3-m depth. The larger heat-transfer rates are caused by increases in the 
temperature gradient and thermal conductivity in the soil adjacent to the floor. Uncertainty in the 
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depth of the groundwater can have a large impact on predicted heat losses from the floor when 
the groundwater is within 2 m of the basement floor. 

Results from GHAMT were compared with GHT2D for an annual simulation of a partially 
insulated basement using hourly weather data. It was determined that the heat-transfer model 
should take into account the variation of the soil thermal conductivity with depth and accurately 
model the ground-surface boundary condition, including the effects of evapotranspiration. A 
simple method of modeling the variation in the soil thermal conductivity with depth is to use at 
least two values: one value for the soil below the basement floor, or about 1.5-m depth, and 
another value that is 10-20% lower for the soil above this depth. This accounts for the higher soil 
moisture content below the top 1-2 m of soil. The level of evapotranspiration modeled can have a 
large impact on the calculated heat transfer from basement walls. Unless there is knowledge of 
the exact level of evapotranspiration, the results should be bracketed between the potential value 
and zero. Using seasonal values of thermal conductivity (slightly higher in the summer) 
produced reasonable annual heat-loss values, but caused a jump in the floor heat loss 
corresponding to the change in thermal conductivity and so is not recommended.  

Two analytic methods for calculating the heat loss from a basement, the Mitalas method (1987) 
and the ASHRAE method (1997),  were compared with GHT2D. Both methods predicted higher 
heat loss from the wall than GHT2D: Mitalas by 13–45% and ASHRAE by 68%. The Mitalas 
method predicted higher floor heat loss by 6–15%, and the ASHRAE method predicted 20% 
lower floor heat loss. The seasonal variability of the Mitalas method agreed very well with 
GHT2D, but the ASHRAE method did not match the seasonal variability. Both methods were 
derived with simplified ground-surface boundary conditions, and information on the assumptions 
used in the models is not stated in the literature. The Mitalas method differed from the measured 
data by 1–42% (Mitalas 1982). Applying any mathematical approximation should be done with 
caution and with an awareness of the possible errors in the answers. 

Although the soil thermal conductivity is important, its value is usually chosen with very little 
knowledge or account of the soil type and moisture content. One of the most important results 
from this research is using the heat-and-moisture transfer model to determine an effective soil 
thermal conductivity to use with heat-transfer models. With a rough estimate of the soil type, 
GHAMT may be used for a simple case to estimate an effective thermal conductivity to use with 
a heat-conduction program. This thermal conductivity value can then be used with a higher level 
of confidence for more complex geometries with a much faster heat-conduction code.  

Although the optimal use of insulation was not the subject of this research, some suggestions can 
be inferred from the results. Under most circumstances, ground-coupled buildings steadily lose 
heat to the ground; therefore, insulation levels should be carefully considered. This steady heat 
loss is desired in some cases to cool buildings, but in cold climates, it can account for a large 
portion of a building’s energy budget. To control heat loss to the atmosphere, insulation should 
be used around the perimeter for slabs-on-grade and basement walls. To control heat loss to the 
deep ground, slab-on-grade and basement floors should be insulated if the ground water is within 
1–2 m of the floor. Further economic analysis should be conducted concerning the building size, 
construction, location, soil conditions, and heating fuel costs. Good resources for guidelines on 
insulation are the Building Foundation Design Handbook (Labs et al. 1988) and the Builder’s 
Foundation Handbook (Carmody et al. 1991) from the Oak Ridge National Laboratory. 
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7.2. Recommendations for Further Work 

There are two general areas for continuing this work: use the models to further analyze ground-
coupled heat-and-moisture transfer, and work on improving the models. Research areas for 
improving the models include the following: 

1. Validate the model against measured temperature and moisture contents similar to what was 
done in Chapter 5 with temperature data. 

2. Develop a surface-cover algorithm that can model vegetation cover in the summer and snow 
cover in the winter. This can be done in a crude way with the present model, but should be 
improved. 

3. Automate the mesh-generation process. 
4. Extend the programs to three dimensions.  
5. Integrate the programs with a building energy simulation program. 
6. Investigate the freezing model and the determination of the frozen soil thermal conductivity. 
 
Combining the heat-and-moisture transfer model with the heat-transfer model forms a great asset 
for researchers. The programs use the same input files and share many of the same program 
modules, which makes them easy to use and modify. The models could be used to further 
investigate the effects of moisture and location on ground-coupled heat transfer and to develop 
guidelines for better use of simple models as suggested above.  In addition, the programs are not 
limited to analyzing buildings; they could be used for other heat and mass transfer problems in 
porous media. 
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APPENDIX A: Derivation of the Heat-and-Moisture Transfer Equations 
 
A.1. Liquid Transfer 

The flow of water through saturated soil can be approximated by Darcy’s law relating the flow 
lu  to the gradient of the hydraulic head. Richards extended Darcy’s law to unsaturated soil by 

using the gradient of the total potential Φ and defining the hydraulic conductivity K as a function 
of the soil water matric potential ψ (Hillel 1998).  

Φψ−= ∇)(Klu  (A.1) 

This equation applies to low flow situations where the inertia forces are negligible, i.e., for a 
Reynolds number based on effective pore diameter of less than one (Hillel 1998).  

The total potential energy of the soil moisture is taken as the sum of the matric and gravitational 
potentials as presented in Eq. (A.2), where z is positive upwards. 

z+ψ=Φ  (A.2) 

Substituting Eq. (A.2) into Eq. (A.1) yields: 

k̂KK −ψ−= ∇lu  (A.3) 

Consider a control volume of soil as shown in Figure A.1, the mass balance on the liquid water is 
governed by the simple equation 

Smmm outinstored +−=∆ ∑∑&  (A.4) 

∆x∆z(ρv)|y+∆y 

∆x∆y(ρw)|z 

∆y∆z(ρu)|x 
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∆y∆z(ρu)|x+ ∆x 

∆x∆y(ρw)|z+ ∆z 
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Figure A.1. Fixed control volume of soil used for the liquid moisture balance. 

Equation (A.4) can be written as 
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where S represents a source term. Assuming a constant density, dividing through by the density 
and the total volume results in 

E
t

−⋅−=
∂
θ∂

l
l u∇  (A.6) 

The volumetric liquid moisture content is lθ  (m3/ m3) and the evaporation from the liquid to the 
vapor phase in the soil pores is E (s-1). The liquid content is a function of the matric potential and 
temperature; therefore, the time derivative of the liquid content can be expanded by the chain 
rule to give 
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Substituting Eqs. (A.3) and (A.7) into (A.6) results in the governing equation for liquid transfer. 
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where the matric and thermal liquid capacitances are defined as 
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A.2. Vapor Transfer 

Assuming a uniform and constant total pressure, P (Pa), vapor mass diffusion in a single gas-
filled pore can be approximated as a modification of Fick's law of diffusion (de Vries 1975 and 
Nakano and Miyazaki 1979): 

v
vw
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v P
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TR
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∇
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−=m&  (A.11) 

The molecular diffusivity of water vapor in air is Da (m2/s), Rw (461.5 J/kg K) is the gas constant 
for water vapor, T (K) is the absolute temperature, and Pv is the partial pressure of the vapor. The 
molecular diffusivity of water vapor in air can be determined by (deVries 1975): 
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The reference pressure is Po = 1.01325 x 105 Pa, the reference temperature is To = 273.15 K, c = 
2.17 x 10-5 m2/s, and n = 1.88. The mass-flow factor as calculated by Eq. (A.13) is unity for all 
situations found around buildings and is therefore dropped from further equations. 

vPP
P
−

=ν  (A.13) 

Assuming the vapor behaves as an ideal gas, the vapor pressure can be written as  

vwv TRP ρ=  (A.14) 

Now the vapor diffusion equation can be written in terms of the vapor density as 
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v

vav T
T

D ∇∇m&  (A.15) 

The term ( )pT∇ is the temperature gradient across a single gas-filled pore. The vapor density in 

the pores can be expressed as the product of the relative humidity ϕ and the saturated vapor 
density ρvs (Edlefsen and Anderson 1943). 

ϕρ=ρ vsv  (A.16) 

An expression for the relative humidity in the gas-filled pores can be found by assuming that the 
soil liquid and vapor are in thermodynamic equilibrium. In the absence of solutes, the free 
energy of the liquid phase and the vapor phase are equal (Edlefsen and Anderson 1943 and Hillel 
1998). The free energy of the liquid and vapor phases is 

gf ψ=∆ l  (A.17) 
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The acceleration of gravity is represented by g, and Pvs is the saturated vapor pressure at 
temperature T. Setting these two equations equal to each other gives an expression for the 
relative humidity.  
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From Eqs. (A.16) and (A.19), the vapor density gradient can be expressed in terms of 
temperature and matric potential gradients, and the vapor diffusion equation can be written as 
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From equation (A.19), the derivatives of the relative humidity with temperature and matric 
potential are  
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Substituting Eqs. (A.21) and (A.22)  into Eq. (A.20) results in 
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A closer look at the temperature gradient coefficient is needed at this point. De Vries (1958 and 
1975) only includes the first term in the parentheses. Nakano and Miyazaki (1979) graphed the 
first three terms as a function of temperature for values of the matric potential of –104 and –105 
m and presented a logical argument concerning the fourth term. They concluded that (1/T) is 
negligible, the term ( )2

wTRgψ  is only significant for ψ < -104 m, and the term 

( )( )TTRg 2
w ∂ψ∂  is only significant for ψ < -105 m. The four terms are plotted as a function of 

the matric potential in Figure A.2 assuming that the surface tension ratio is a valid temperature 
correction for the matric potential. From this graph, it is easy to see that the second and third 
terms are negligible for ψ > -104 m and quickly become the dominant terms below this point. 
Only in extremely dry conditions is the matric potential less than –104 m.  However, since these 
terms become large very quickly, they are included for ψ < -104 m. The term (1/T) is considered 
negligible and is dropped from the calculations. 
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Figure A.2. Temperature gradient coefficient terms for the vapor diffusion 
equation (Eq. (A.23)) at 30.0°C. 

The vapor mass flux presented Eq. (A.23) is for a single pore and must be altered to include the 
effects of the porous matrix found in soil. The usual method of doing this is to introduce a term 
for the cross-section available for diffusion and a tortuosity factor. Philip and de Vries (1957) 
point out that the vapor and liquid phases interact under the influence of a temperature gradient 
and describe the process as a “series-parallel” transfer. This interaction increases both the 
available cross-section for diffusion and the tortuosity factor. A vapor-diffusion correction factor 

)(f lθ  is added to account for these interactions. The vapor-diffusion correction factor is defined 
by de Vries (1958) as 
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The soil porosity is η, and θk is a critical moisture content below which the hydraulic 
conductivity falls to a value much lower than its value at saturation (Philip and de Vries 1957). 
This critical moisture content value is not exactly the same as the value defined in Chapter 3 in 
the thermal conductivity discussion, but it is taken as the same value in this work. 

Another correction for applying Eq. (A.23) to a soil matrix is required because the temperature 
gradients across the gas-filled pores are higher than that across the system due to the lower 
thermal conductivity of the gas-filled pores. The temperature gradient term is multiplied by the 
ratio of the average temperature gradient across the pores and the temperature gradient across the 
system.  
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The vapor mass flux of Eq. (A.23) can now be written for the soil system as  

TDD Tvv
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 (A.25) 

The equation is divided by the liquid density for consistency with the liquid transfer equation. 
The matric and thermal vapor diffusivities are 
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As discussed above, the last two terms in the parentheses of Eq. (A.27) are only included for ψ < 
-104 m. The term ( )pT∇  now represents the average temperature gradient across the gas-filled 
pores and not a single pore as used in Eq. (A.23). An expression for the ratio of the temperature 
gradients follows from the de Vries method of approximating the thermal conductivity (Chapter 
3 and Appendix C) and can be calculated as 
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The vapor content is expressed as an equivalent liquid content; therefore, assuming 
thermodynamic equilibrium between the liquid and vapor, we can write   
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Expansion of ( )t/v ∂θ∂  from Eq. (A.29) yields 
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Substituting Eq. (A.7) into Eq. (A.30) and expanding the other time derivatives in terms of ψ and 
T yields  
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where the matric and thermal vapor capacitances are 
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By applying the conservation of mass to the vapor content in a similar manner as done earlier for 
the liquid moisture content, the following equation can be written. 

E)/(
t v
v +ρ⋅−=
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l&m∇  (A.34) 

The governing equation for vapor transfer can now be derived by substituting Eqs. (A.25) and 
(A. 31) into (A.34). 
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A.3. Total Moisture Transfer 

The total moisture transfer equation is found by combining the equations for liquid and vapor 
transport, Eqs. (A.8) and (A.35). 
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where the matric and thermal moisture capacitances are 

vm CCC ψψψ += l   [m]  (A.37) 

TvTTm CCC += l   [K]  (A.38) 

and the matric and thermal moisture diffusivities are 

vm DKD ψψ +=   [m/s]  (A.39) 

TvTm DD =  [m2/s K]  (A.40) 

A.4. Heat Transfer 

Heat transfer in soil occurs by conduction, convection, latent heat transfer by vapor distillation 
cycles, sensible heat transfer by vapor and liquid movement, and radiation. Consider an energy 
balance on the control volume in Cartesian coordinates in Figure A.3. The energy balance is 
governed by the first law of thermodynamics. 

outin WEQ +∆=  (A.41) 
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The thermal energy transfer from the surroundings to the control volume is Qin, the change in the 
internally stored energy of the system is ∆E, and the work done by the control volume on the 
surroundings is Wout. The internal energy of the system consists of (Burmeister 1993) 

K+++++= neticelectromagtensionsurface
)forcesbody(

potentialkineticthermal EEEEEE  (A.42) 

For the soil system, the changes in energy due to surface tension and electromagnetic forces are 
assumed to be negligible. The soil matrix is assumed to be fixed and, therefore, there is no 
change in potential energy. The change in the liquid’s potential energy is taken into account 
through the connection to the moisture transfer equation. The fluid is assumed to move very 
slowly; therefore, changes in the system’s kinetic energy are also negligible. This leaves only the 
thermal energy. If the first law of thermodynamics is taken as a rate equation, then it can be 
written as 

outinoutinstored WQEEE −+−= &&&&  (A.43) 
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Figure A.3. Fixed-shape control volume and energy transfers.  

The energy balance as a rate equation on the control volume in Figure A.3 is  
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The internal energy per unit mass is e (J/m3), the flux crossing the boundary is q (W/m2) and 
defined in Eq. (A.49), and q ′′′  (W/m3) is a heat-source term. Dividing both sides of the above 
equation by the volume and taking the limit as the differential quantities go to zero gives 
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The system volume is fixed and the fluid velocities are very small; therefore, the work done by 
the control volume is negligible. 

As stated above, only changes in the thermal internal energy are considered, which can be 
approximated by 

TCe v∆=∆=∆ u  (A.46) 

For an incompressible media, the specific heat at constant volume is approximately equal to the 
specific heat at constant pressure. 

pv CC ≈  (A.47) 

The soil system is considered to be composed of solid soil grains (s), liquid water ( l ), water 
vapor (v), and air (with other gasses). Neglecting the heat capacity of the air and the heat of 
wetting, the soil system’s thermal energy relative to a reference temperature To can be written as 
(Jury 1973) 

v0fgov,pv

o,pos,ps

)T(h)TT(C
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−θρ+−ρη−=ρ

ll

lll  (A.48) 

The specific heat capacities are denoted by Cp (J/kg K), the latent heat (enthalpy) of vaporization 
is hfg (J/kg), and θv is the volumetric vapor content and calculated as an effective volumetric 
liquid content. This equation assumes that the thermal sources and sinks are uniformly 
distributed throughout the soil system. 

The heat flux in the soil consists of conduction, convection, and radiation. The conduction term 
is dominant, and the radiation term is negligible. With this in mind, the heat flux across a surface 
in the soil can be represented by the following equation  

vov,po,pvofg
* )TT(C)TT(C)T(hTk mmmq &&& ll −+−++−= ∇  (A.49) 

The thermal conductivity k* represents the pure heat conduction through the soil system with no 
moisture movement. Note that this is different than the thermal conductivity k calculated by the 
de Vries method (Chapter 3 and Appendix C), which includes the effect of temperature-driven 
latent heat transfer by vapor distillation. Substituting Eqs. (A.48) and (A.49) into Eq. (A.45) 
yields 
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The total heat capacity of the soil system and the latent heat of vaporization at temperature T can 
be defined as 

v,pv,ps,ps CCC)1(C llll ρθ+ρθ+ρη−=  (A.51) 
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With these substitutions, Eq. (A.50) becomes 

qTCTC

)TT(C)TT(Ch)Tk(
t

)TT(C
t

)TT(C
t

h
t
TC

vv,p,p

o,pvo,pvfg
*

v
o,po,p

v
fg

′′′+⋅−⋅−

⋅−−⋅−−⋅−⋅=
∂
θ∂

−ρ+
∂
θ∂

−ρ+
∂
θ∂

ρ+
∂
∂

∇∇

∇∇∇∇∇

mm

mmm
&&

&&&

ll

lll

ll
l

lll

 (A.53) 

The conservation of total moisture in the system can be expressed as 

0
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By combining the like vapor and liquid terms in Eq. (A.53) to form moisture transfer terms 
similar to that of Eq. (A.54) and neglecting the sensible heat transfer of vapor flux, the soil heat 
transfer equation becomes 
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From the derivations of the liquid and vapor transfer equations, we can substitute for the time 
rate of change of vapor (Eq. (A.31)) and the vapor flux (Eq. (A.25)) to get 
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finally 
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The first term on the right hand side of Eq. (A.57) combines the first two terms on the right hand 
side of Eq. (A.56). This combination of the Fourier heat conduction and the temperature-driven 
latent heat transfer by the vapor distillation cycles is a result of using the de Vries method of 
calculating the effective thermal conductivity k of the soil system. The matric diffusivity is 

vfgT DhD ψψ ρ= l   [W/m2]  (A.58) 

and the matric and thermal heat capacitances are 

TvfgTT ChCC lρ+=   [J s/m4]  (A.59) 

vfgT ChC ψψ ρ= l   [J/m3 K]  (A.60) 

A.5. Freezing Model 

The purpose of this model is to capture the effects of freezing on the heat transfer process while 
avoiding complications that increase computation time drastically. Freezing affects the heat 
transfer mainly through the heat that is released or absorbed during the phase-change process and 
through the changes in thermal and hydraulic properties.  

The phase change associated with freezing water in soil is not isothermal; in fact, a small amount 
of liquid water remains even at temperatures near liquid nitrogen (Harlan 1973). The unfrozen 
water content at temperatures below the freezing point of water exists in thin films adsorbed on 
the soil grains. The freezing process is often modeled as starting at the 0.0°C isotherm and 
extending through a frozen fringe to a solid ice layer (called an ice lens). In a dynamic situation, 
the properties of the frozen fringe are typically unknown and must be approximated (Nakano 
1999). To simplify the model due to the lack of knowledge of the physical process, the freezing 
process was assumed to be isothermal as shown in Figure A.4.  

If only pore ice exists in the partially frozen soil, the movement of the unfrozen water content 
can be approximated by a Darcy’s Law approach similar to that used in unfrozen soil (Kay and 
Perfect 1988). The correlations used for the hydraulic conductivity and other properties for 
frozen soil are given in Appendix C. The soil matrix is assumed to be nondeformable; therefore, 
frost heaving is not modeled. The effects of solutes are also neglected. 
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Figure A.4. Model of the isothermal soil-freezing process. 

The freezing and thawing processes are modeled as shown in Figure A.5. It is assumed that the 
heat capacity of each node can be calculated by Eq. (A.61) for the initial estimate of the 
temperature T1. After the temperature and matric potential equations are solved, the nodes are 
checked for a solid-liquid phase change and new temperatures 2T′  and moisture and ice contents 

2,lθ′  and 2,iθ′  are calculated accounting for the effects of the latent heat of fusion according to the 
cases outlined below. 

i,Pii,Ps,Ps CCCC ρθ+ρθ+ρ= lll  (A.61) 
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Figure A.5. Model approximation of isothermal (a) freezing and (b) thawing of 
soil. 

CASE 1:  Freezing starting at T1 in Figure A.5a 

The excess heat removed beyond cooling the system from T1 to Tf, is given by: 
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)TT(C)TT(CVQ f2TTf2nex −=−=  (A.62) 

The volume associated with the node is Vn, C is the volumetric heat capacity, and CTT is the heat 
capacity of the node as defined by Eq. (A.59) and calculated in the finite element formulation of 
the problem. 

The heat removal required for a complete phase change with Lf  (J/kg) as the latent heat of fusion 
is 

nfpc VLQ llρθ−=  (A.63) 

If |Qex| ≤ |Qpc|, then the system is partially frozen, and the following applies 
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If |Qex| > |Qpc|, then the system is completely frozen, and the following equations apply. Note that 
the new temperature is just an approximation since the heat capacity was originally calculated 
with a liquid content and the final state is frozen. A more accurate temperature will be calculated 
on the next iteration, which will use the correct heat capacities. 
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This case also applies for an initial temperature of Tf and freezing. 

CASE 2:  Thawing starting at T1 in Figure A.5b. 

The excess heat added beyond heating the system from T1 to Tf, is given by 

)TT(C)TT(CVQ f2TTf2nex −=−=  (A.66) 

The heat addition required for a complete phase change is 

nfiipc VLQ ρθ=  (A.67) 

If |Qex| ≤ |Qpc|, then the system is partially frozen, and the following applies 
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If |Qex| > |Qpc|, then the system is completely thawed, and the following equations apply. Note 
that the new temperature is just an approximation since the heat capacity was originally 
calculated with an ice content and the final state has no ice. A more accurate temperature is 
calculated on the next iteration, which will use the correct heat capacities. 
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 (A.69) 

This case also applies for an initial temperature of Tf and thawing. 
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APPENDIX B: Finite Element Formulation 
 
B.1. Introduction 

When using the FEM, the problem domain is divided into elements with three or more nodes for 
two dimensions and four or more nodes for three dimensions. The dependent variables, in this 
case T and ψ, are approximated with piecewise continuous functions over the elements. The 
approximations are denoted by T̂  and ψ̂  and are calculated over each element by (Zienkiewicz 
and Taylor 1989) 

∑
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1i ii
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1i ii

)z,y,x(N)z,y,x(ˆ)z,y,x(

T)z,y,x(N)z,y,x(T̂)z,y,x(T
 (B.1) 

In Eq. (B.1), the Ni are shape functions (or interpolation functions), Ti and ψi are the nodal point 
values, and n is the number of nodes per element. The form of the shape functions determines the 
“shape” of the approximation over the elements. For two-dimensional problems, three- and four-
node elements use linear approximations, and elements with more nodes use higher order 
approximations. The programs for this research were written to accept only three-node triangles 
and four-node quadrilaterals.  

In the FEM, the elements in the problem domain are mapped to a parent element using the shape 
functions. The most common parent elements are isoperimetric elements, which means that the 
order of the interpolation functions used to map the dependent variables and the shape functions 
used to describe the shape of the elements are the same (Istok 1989). The parent isoperimetric 
elements used and the shape functions are shown in Figure B.1. 

B.2. Application to the Heat-and-Moisture Transfer Equations 

The governing differential equations for the heat and moisture transfer in soil can be written as 
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Figure B.1. Three- and four-node isoperimetric parent elements, shape 

functions, and points and weights used for Gaussian quadrature 
(Zienkiewicz and Taylor 1989). 

When approximate solutions are used in Eqs. (B.2) and (B.3), the equations are not satisfied and 
there is a residual. The residual varies across the domain, and it is not possible to make the 
residual zero for every node. In the method of weighted residuals, the weighted average of the 
residuals is forced to zero. In Galerkin’s method of weighted residuals, the weighting functions 
are the original shape functions. Applying Galerkin’s method to the governing differential 
equations consists of multiplying the residual by the shape factors and setting the integral over 
the domain equal to zero. 
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The double derivatives in the above equations can be expanded by the chain rule to get 
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Equation (B.7) can be rewritten to eliminate the derivative of the hydraulic conductivity with 
respect to z with the following identities from Eqs (A.39) and (A.2). 

vm DKD ψψ +=  (B.8) 

z−Φ=ψ  (B.9) 

k̂KKK −Φ=ψ ∇∇  (B.10) 

The third and fifth terms from Eq. (B.7) can be rewritten using the identities in Eqs. (B.8) and 
(B.10) to get 

( ) ( ) ( )
z

KΦ̂Kψ̂
z
Kψ̂ jT

v
T

m
T

∂

∂
+⋅+⋅=

∂
∂

+⋅ ψψ

N
NDNNDN ∇∇∇∇∇∇  (B.11) 

Substituting these new terms back into Eq. (B.7) gives 
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The double derivative terms in Eqs. (B.6) and (B.12) can be transformed by applying Gauss’s 
Theorem, which may be stated as (Arfken and Weber 1995) 

∫∫ ΓΩ ⋅≡Ω⋅ Γ∇ dd VV  (B.13) 

The volume integral Ω is transformed into a surface integral Γ. With this transformation, the 
governing equations are now in the weak form. 
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Notice that only the first derivative of the dependent variables appears in the equations; 
therefore, the requirements on the solutions have been weakened. Now the FEM approximations 
from Eq. (B.1) are inserted for the approximations of the dependent variables to get 
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where NN ∇=′ and NN ΤT ∇=′ . The temperatures, matric potentials, and total potentials are 
now vectors of the nodal point values for the element. Equations (B.16) and (B.17) are applied to 
one element at a time. The flux boundary conditions are defined in Eqs. (4.46) and (4.75) and 
repeated here for convenience. 
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With the substitution of the flux boundary conditions, and extending the elemental equations to a 
system of equations for each node, the FEM equations can be written as 

0TTTTTTT =++++ ψψ fψCTCψDTD &&  (B.20) 

0mTmmTm =++++ ψψψ fψCTCψDTD &&  (B.21) 

The conductance matrices, D, and capacitance matrices, C, follow the pattern of Eqs. (B.22) and 
(B.23). Note that only the DTT matrix contains the last two terms in Eq. (B.22). The second term 
of Eq. (B.22) contains the liquid mass flux calculated using the previous value of the matric 
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potential. The last term in Eq. (B.22) occurs only at the surface nodes with a convective 
boundary condition. The presence of the second term in Eq. (B.22) makes the conductance 
matrix nonsymetric, which increases the storage requirements. The forcing vectors are defined in 
Eqs. (B.24) and (B.25). All of the integrations are performed using Gaussian quadrature for 
volumes, areas, and lines where appropriate. 
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The two sets of equations for the heat-and-moisture transfer can be combined into one set and 
written as shown in Eq. (B.26). They are combined with alternating equations for temperature 
and matric potential at each node. This is done to promote symmetry and reduce the bandwidth 
of the conductance and capacitance matrices, which reduces storage requirements and solution 
time.  

0=++ fUCDU &  (B.26) 

A single-step algorithm for the transient analysis is presented in Eq. (B.27), where k is the time-
step number and β is a time-weighting function, which determines whether the method is explicit 
(β = 0) or implicit (0 < β <= 1) (Zienkiewicz and Taylor 1989). All of the analysis done in this 
report applied a time-weighting function of 0.5, which is analogous to the Crank-Nicolson 
implicit routine used in finite differences. The forcing function is averaged assuming a linear 
variation in time as in Eq. (B.29). 

[ ] [ ] fUDCUDC tt)1(t k1k ∆−∆β−−=∆β+ +  (B.27) 

[ ] [ ] fUCMDUCPD tk1k ∆−=+  (B.28) 

( )k1kk ffff −β+= +  (B.29) 

The coefficient matrices are calculated using values of T and ψ averaged between the value from 
the previous time step k and the value from the previous iteration of the current time step i-1. 
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k1k

i
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Equation (B.28) is nonlinear since the coefficient matrices are functions of the dependent 
variables. The solution of the moisture-transfer equation is also subject to mass balance errors 
due to the highly nonlinear relationship between the moisture content and the matric potential 
(Milly 1985 and Celia et al. 1990). This is especially a problem with the infiltration into an 
initially dry soil. According to Celia et al., diagonalizing or lumping the capacitance matrix is 
necessary to ensure a nonoscillatory and mass conservative solution, and it has been shown to 
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reduce the number of iterations to convergence. Diagonalization is accomplished by summing 
the total capacitance for the element and using a scaled distribution to each of the nodes.  

The nonlinear equations are solved using a modified Picard iteration method (Istok 1989). In this 
method a residual vector is calculated as 
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k

1i
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Then the following system of equations is solved for i
k∆U . 

[ ] 1i
k

i
k

−= R∆UCPD  (B.32) 

The new values of U for time step k and iteration i are then calculated as 

i
k
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i
k ∆UUU ϖ+= −  (B.33) 

The value of the relaxation factor ϖ is determined by experience. For this work, it was found that 
a relaxation factor of  ϖ = 1.0 works best. For the first iteration at time step k, the values for 1i

k
−U  

are taken from the previous time step. Convergence is defined as  

ε<
U
∆UMAX  (B.34) 

The convergence criterion ε is typically set at 0.001. If convergence is not reached, new 
coefficient matrices are assembled and a new residual is determined by Eq. (B.31), and the 
process is repeated.  
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APPENDIX C: Material Properties 
 
C.1. Properties for Air, Water, and Ice 

The thermal conductivity k, density ρ, specific heat capacity CP, surface tension σ, and kinematic 
viscosity ν , for air, water, and ice are listed in Table C.1. All temperatures used in Eqs. (C.1) to 
(C.5) are in degrees C. 

Table C.1. Physical and thermal properties of air, water, and ice. 
 k 

(W/m·K) 
ρ 

(kg/m3) 
Cp 

(J/kg·K) 
σ 

(J/m2) 
ν  

(s/m2) 
Air Eq. (C.1) (1) 1.2 (2) 1,007.0 (2)   
Water Eq. (C.2) (1) Eq. (C.3) (1) 4,180.0 (2) Eq. (C.1) (4) Eq. (C.11) (1) 

Ice 2.2 (3) 921.0 (3) 2,040.0 (3)   

1 Equation fit to data from Incropera and DeWitt (1985) 
2 Incropera and DeWitt (1985) 
3 ASHRAE (1997) 
4 Ewen and Thomas (1989) 
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The latent heats of fusion Lf and vaporization hfg of water are given in Eqs. (C.6) and (C.7) 
(ASHRAE, 1977). The equation for the latent heat of vaporization is a fit to data from the 
ASHRAE Handbook of Fundamentals where the temperature is in degrees C. 

5
f 10x338.3L =   [J/kg] (C.6) 

T240510x501.2h 6
fg −=  [J/kg] (C.7) 

The density of saturated water vapor is given in Eqs. (C.8) and (C.9), where the temperature is in 
K. The first expression is from Ewen and Thomas (1989), and the second expression is taken 
from the ASHRAE Handbook of Fundamentals (1997). 
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The coefficients in Eq. (C.9) are 

        C1 = -5674.5359 
        C2 = -0.51523058 
        C3 = -9.677843E-3 
        C4 = 6.2215701E-7 
        C5 = 2.0747825E-9 
        C6 = -9.484024E-13 
        C7 = 4.1635019 

C.2. Properties of Soils 

Five soils that represent the range of soils often found around building foundations and 
basements were selected to be included in this work. This section includes the soil classifications 
and the equations used to calculate the hydraulic and thermal properties.  

C.2.3. Soil Classifications 
The properties of five different soils listed in Table C.2 are included in this work and with the 
program GHAMT. These represent the range of soils often found around building foundations 
and basements. The information on three of the soils was taken from literature. For the other two 
soils, samples were collected by the author and tested by the Soil, Water, and Plant Testing 
Laboratory at Colorado State University, Fort Collins, Colorado. The River Rock sandy clay 
loam was taken from the River Rock co-housing development in Fort Collins, Colorado, and the 
Bighorn sandy loam was taken from the Bighorn commercial center in Silverthorne, Colorado.  

Table C.2. Classification and properties of soils included in this work. 

Name Classification Particle Volumetric 
Content 

Porosity Bulk 
Density 

Sat. 
Hydraulic 

Conductivity 

  Sand Silt Clay  (kg/m3) (m/s) 
Solar Village Clay 
(Hampton 1989) 

bentonitic clay 0.158 0.40 0.442 0.550 1,260 1.5E-6 

Yolo Light Clay 
(Moore 1939) 

clay loam 0.238 0.45 0.312 0.495 1,320 1.23E-7 

River Rock Sandy 
Clay Loam 

sandy clay loam 0.56 0.16 0.28 0.381 1,420 5.7E-5 

Bighorn Sandy Loam sandy loam 0.77 0.10 0.13 0.381 1,400 5.0E-5 * 
Loamy Sand 
(Noborio et al. 1996) 

loamy sand 0.835 0.07 0.09 0.396 1,602 4.455E-5 

* Estimated value of saturated hydraulic conductivity 
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C.2.4. Soil Moisture Retention 
For the all of the soils except the loamy sand, the soil moisture retention (or soil water 
characteristic) curve is estimated by the method presented by van Genuchten (1980). The form of 
the correlation is 

( )
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
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
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
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

αψ+
=Θ  (C.10) 
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r

θ−θ
θ−θ

≡Θ  (C.11) 

where Θ is the degree of saturation; θr and θs are the residual and saturated water contents; and 
α, m, and n are parameters set to fit the measured data. Van Genuchten gives a graphical method 
of determining these parameters to fit the measured data. The approximation curves along with 
the measured data for Solar Village clay and Yolo light clay are shown in Figure C.1. Because 
the measured data for the Solar Village clay exhibits two knees, the approximation had to be 
divided into two sections. The parameters for the van Genuchten method and the reference 
temperature at which the measured data were taken are shown in Table C.3. 

Figure C.1. Soil moisture retention data and approximation curves for Solar 
Village clay (data Hampton 1989) and Yolo light clay (data Moore 
1939). 
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Table C.3. Parameters from the van Genuchten Method for the Matric Potential and 
Hydraulic Conductivity Correlations. 

Soil θr θs α m n Tref (C) 

Solar Village clay (1)* 0.014 0.289 0.00188 0.4246 1.738 25.0 
Solar Village clay (2)* 0.27 0.55 2.5119 0.3578 1.5572 25.0 
Yolo light clay 0.1 0.495 3.337 0.262 1.355 30.0 
River Rock sandy clay loam 0.079 0.381 1.1714 0.44166 1.791 20.0 
Bighorn sandy loam 0.074 0.381 1.2708 0.42145 1.7285 20.0 

* The curve for Solar Village clay is divided into the following regions: 
Region (1) 0.0 ≤ θ < 0.285 
Region (2) 0.285 ≤ θ ≤ 0.495 

 
The soil moisture retention curve correlation for the loamy sand was published by Noborio et al. 
(1996) with a reference temperature of 25.0°C and shown in Eq. (C.12). The curves used in 
GHAMT to approximate the soil moisture retention are shown in Figure (C.2) 
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Figure C.2. Approximate soil moisture retention curves for the soils included 
in this work. 
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It is difficult to model the behavior of soil moisture for very low moisture contents. This region 
is difficult and time consuming to measure in the lab, and the mathematical form of the van 
Genuchten model does not allow it to be modeled well. The correlation of van Genuchten goes to 
infinity at the residual moisture content, and the value of the residual moisture content is limited 
in the process of fitting the measured data. Unless measured data at very low moisture contents is 
known, the van Genuchten method is the best available solution. 

Hysteresis is not included in this model due to the added complexities and the uncertainties in the 
effectiveness of the hysteresis models. However, ignoring the hysteresis in the soil moisture 
retention curve can lead to substantial errors in certain cases (Miller and Miller, 1956). This is 
one area of this model that may need to be improved if further research shows that a hysteresis 
model is necessary. 

C.2.5. Hydraulic Conductivity 
If measured data is known for the range of moisture contents, a good approximation can be 
found by fitting the data with a least squares technique (Haverkamp et al. 1977). If values of 
hydraulic conductivity are not known over the range of moisture contents, a fairly good 
approximation from van Genuchten (1980) uses the hydraulic conductivity at saturation (Table 
C.2) and the parameters determined from the soil moisture retention curve (Table C.3).  
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This method is used for all of the soils except the loamy sand from Noborio et al. (1996). They 
used the following correlation with K and Ksat in (m/s) 
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The approximations used for the hydraulic conductivity of the five soils are shown in Figure C.3.  
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Figure C.3. Approximations of the hydraulic conductivity of the soils 
included in this work. 

C.2.6. Hydraulic Conductivity of Frozen Soil 
The hydraulic conductivity reduces drastically as the liquid water content of the soil freezes 
(Horiguchi and Miller 1983). The hydraulic conductivity of partially frozen soil is a function of 
the unfrozen water content, which is a function of the temperature (Hoekstra 1966 and Harlan 
1973). Because no correlations for the hydraulic conductivity of frozen soil were found, it is 
assumed to follow the unfrozen relation using the unfrozen water content and corresponding 
matric potential. 

C.2.7. Temperature Dependency 
The method used to account for the temperature effects is the STVF approach. This method uses 
the ratio of the surface tensions and kinematic viscosities at a reference temperature and the 
temperature of interest to adjust the matric potential and the hydraulic conductivity.  
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C.2.8. Thermal Conductivity 
The model for the soil thermal conductivity is taken from de Vries (1966). This method assumes 
that the soil consists of a continuous medium (usually water or air for dry soil) with evenly 
distributed ellipsoidal-shaped grains. The thermal conductivity is then given by Eq. (C.18). Air is 
considered the continuous medium at moisture contents below 0.05, and the thermal conductivity 
from this equation is multiplied by a correction factor of 1.25. 
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The number of grain types of the same shape and thermal conductivity is n, x is the volumetric 
content, and ξ is the ratio of the average temperature gradient in the constituent and the average 
temperature gradient of the medium and is approximated by 

1

c,b,a
a

w

i
i g1

k
k1

3
1

−

∑



















−+=ξ  (C.19) 

The values of ga, gb, and gc depend on the ratios of the axes of the grains, and they sum to unity. 
For a sphere they are equal to 1/3. See Table C.4 for the values used in this work. 

The effective thermal conductivity of the gas filled pores is calculated as  

vap kkk +=  (C.20) 
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Table C.4. Physical and thermal properties of soil constituents 

Soil Constituent k 
(W/m·K) 

ρ 
(kg/m3) 

Cp 
(J/kg·K) 

ga 
 

Quartz Eq. (C.22) (1) 2,650.0 (3) 731.5 (3) 0.144 (2) 

Other minerals 2.93 (3) 2,650.0 (3) 731.5 (3) 0.144 (2) 

Organic material 0.25 (3) 1,300.0 (3) 1,923.0 (3) 0.5 (2) 

Water Eq. (C.2) (4) Eq. (C.3) (4) 4,180.0 (5) n/a 
Ice 2.2 (6) 921.0 (6) 2,040.0 (6) 0.144 (2) 

Air Eq. (C.1) (4) 1.2 (5) 1,007.0 (5) n/a 
1 Equation fit to data from de Vries (1966) 
2 de Vries (1966) 
3 van Wijk and de Vries (1966) 
4 Equation fit to data from Incropera and DeWitt (1985) 
5 Incropera and DeWitt (1985) 
6 ASHRAE (1997) 

T02659.0051.9k qtz −=  (C.22) 
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Figure C.4. Approximations for the thermal conductivity of the soils at 20°C 
included in this work. 

C.2.9. Thermal Conductivity of Frozen Soil 
The thermal conductivity of frozen soil is approximated using the de Vries method, treating the 
ice as another soil constituent. The value of ga is assumed the same as that for quartz grains, 
which may not always be a good approximation because ice takes different forms depending on 
conditions. This report assumes that water is the continuous medium for 05.0≥θl , and air is the 
continuous medium for moisture contents below this.  

C.2.10. Soil Heat Capacity 
The volumetric heat capacity C (J/m3·K) is calculated as a weighted average of the specific heat 
capacities CP (J/kg·K) of the soil constituents as shown in Eq. (C.23). The heat capacity of the 
gases is neglected. 
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APPENDIX D: Analysis of the Convective Heat Transfer Coefficient 
 
D.1. Introduction 

This appendix examines several eddy diffusivity models used to estimate the convective heat 
transfer coefficient and evaporation transfer coefficient.  

D.2. Models for the Convective Heat Transfer Coefficient 

The basic equations for convective heat and vapor transfer are  

)TT(DC
)TT(hq

sambha,Pa

sambconv

−ρ=
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 (D.1) 

)(Dhq s,vamb,vvfgv ρ−ρ=  (D.2) 

The convection heat transfer coefficient is h (W/m2·K), the latent heat of vaporization is hfg 
(J/kg), the heat and mass diffusivities in air are Dh (m/s) and Dv (m/s), and the vapor densities at 
the ambient and surface conditions are ρv,amb and ρv,s (kg/m3). 

The stability of the air mass above the ground can be estimated by the Richardson number, 
which relates the buoyancy and frictional forces. The relationship used in this research for the 
Richardson number is (Businger 1975) 
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Notice that this definition of the Richardson number goes to infinity as the wind speed goes to 
zero; therefore, this relationship is not valid for small wind speed values. 

The four eddy diffusivity models examined in this research are from Jensen (1973), van Bavel 
and Hillel (1976), Sellers (1965), and Camillo and Gurney (1986). The first three models 
calculate a neutral stability momentum transfer coefficient by Eq. (D.4), and then adjust for air 
mass stability. 
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Here, κ is the von Karman constant, uw (m/s) is the local wind speed, zw (m) is the height of the 
wind speed measurement, and zo (m) is the roughness height of the ground surface.  

The stability correction relationships reported by Jensen, which follow the work by Businger 
(1975) are 
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The relationships presented by Sellers (1965) are 

ambs

31

2
m2

ambs
mh

ambs

31

2
m2

ambs
mh

TTfor,
u

TT
141DD

TTfor,
u

TT
141DD

<




















 −
−=

≥




















 −
+=

−
 (D.6) 

The equation used by van Bavel and Hillel (1976) is  

)Ri101(DD mh −=  (D.7) 

The fourth method used by Camillo and Gurney (1986) (following the work by Paulson (1970)) 
is more rigorous. The turbulent heat transfer coefficient is calculated as 
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where P1 and P2 are stability correction factors. The stability is determined by the Monin-
Obukhov length, which can be represented as 
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The method of calculating P1 and P2 depends on the atmospheric stability determined by the air-
to-surface temperature difference. For a neutral atmosphere, defined by Camillo and Gurney as 
|Tamb – Ts| ≤ 0.1 K, both P1 and P2 are 0.  

For an unstable atmosphere, (Tamb – Ts) < -0.1 K, P1 and P2 are calculated as 
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For a stable atmosphere, (Tamb – Ts) > 0.1 K, the following expressions are used 
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These relationships cannot be solved explicitly for MO; therefore, they must be solved 
iteratively. For their cases, Camillo and Gurney found that the second term in Eq. (D.10) was 
always between 0.97 and 1.0 and was therefore set to 1.0. However, for the cases run in this 
work, this was not always true and the equations had to be solved iteratively. 

Finally, a very simple method of calculating the convective heat transfer coefficient is presented 
here for comparison (McAdams 1954). 

wu8.37.5h +=  (D.14) 

Comparisons of the convective heat transfer coefficient h from each of these methods, along with 
the Richardson number, are shown in Figures D.1-D.4. Figure D.1 presents the effect of the 
temperature difference between the ground surface and the air on the heat transfer coefficient 
with a wind speed of 5.0 m/s. The Jensen, van Bavel-Hillel, and the Camillo-Gurney models 
behave similarly, but the Sellers model predicts very large values for the heat transfer coefficient. 
The effect of the surface roughness on the heat transfer is shown in Figure D.2. Again, the model 
from Sellers predicts much higher values of the heat transfer coefficient.  

Figure D.1. Effect of ground surface/ambient air temperature difference on the 
convective heat transfer coefficient uw = 5.0 m/s, zveg = 0.05 m. 
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Figure D.2. Effect of surface roughness height on the convective heat 
transfer coefficient for a stable temperature gradient (Tamb – Ts) = 
+10.0 C, uw = 5.0 m/s. 

Figures D.3 and D.4 show the effect of wind speed for stable and unstable temperature 
stratification. For the stable condition, all five correlations behave similarly with one exception: 
at low wind speeds, the van Bavel-Hillel model diverges and becomes negative. For the unstable 
condition, note how Ri has a large negative value for low wind speeds. This causes the Jensen 
and van Bavel models to show a slight increase at low wind speeds. The Camillo-Gurney method 
predicts a large negative number, which is also incorrect. Seller’s model predicts values that are 
much higher than the other models and was therefore not selected. Physically, with low wind 
speed and unstable temperature stratification, large turbulent plums of air rise from the warm 
ground.  

This instability in the air is difficult to model as demonstrated by three of the models. In this 
region, natural convection takes over, and the forced convection models fail. This is handled by 
introducing a natural convection coefficient and blending it with the forced convection value. 
Natural convection from a horizontal flat plate can be estimated by (Incropera and DeWitt 1985) 
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The Rayleigh number RaL is proportional to the cube of the characteristic length, usually the 
length of the plate. It can be easily shown that, for the conditions encountered for natural 
convection from the ground surface, that RaL > 107; therefore, the second relation is used and the 
natural convection heat transfer coefficient can be approximated by  
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The film temperature Tf is the average of the ambient and surface temperatures. For transverse 
flows over a horizontal plate, the forced and natural convection terms can be combined by Eq. 
(D.17) (Incropera and DeWitt 1985). Note that the length scales are slightly different in the 
forced and natural convection values of NuL; therefore, the equation for hc does not derive 
exactly from the Nu correlation. The combined forced convection coefficient (from the Jensen 
model) and natural convection coefficient are shown in Figure D.5.  
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Figure D.3. Effect of wind speed on the convective heat transfer coefficient for a 
stable temperature gradient (Tamb – Ts) = +10.0°C, zveg = 0.05 m. 
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Figure D.4. Effect of wind speed on the convective heat transfer coefficient for an 
unstable temperature gradient (Tamb – Ts) = -10.0°C, zveg = 0.05 m. 

Figure D.5. Combined forced and natural convective heat transfer 
coefficients. The forced convection coefficient is calculated using 
the Jensen model. 

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10
Wind Speed at z = 2 m (m/s)

H
ea

t T
ra

ns
fe

r C
oe

ff
ic

ie
nt

 (W
/m

^2
 K

)

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

R
ic

ha
rd

so
n 

N
um

be
r

h (Jensen)
h (Sellers)
h (Van Bavel)
h (McAdams)
h (Camillo)
Ri

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5
Wind Speed at z = 2 m (m/s)

H
ea

t T
ra

ns
fe

r C
oe

ff
ic

ie
nt

 (W
/m

^2
 K

)

-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

R
ic

ha
rd

so
n 

N
um

be
r

h_natural
h_forced
h_combined
Ri



 
REPORT DOCUMENTATION PAGE 

 
 Form Approved 
 OMB NO. 0704-0188 

 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 
 
1. AGENCY USE ONLY (Leave blank) 
 

 
2. REPORT DATE 

June 2003 
 

 
3. REPORT TYPE AND DATES COVERED 

Technical report 
 

4. TITLE AND SUBTITLE  
A Model for Ground-Coupled Heat and Moisture Transfer from Buildings 
 
6. AUTHOR(S)   
M. Deru, Ph.D. 
 

 
5. FUNDING NUMBERS 

 
BEC3.4005 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

National Renewable Energy Laboratory 
1617 Cole Blvd. 

 Golden, CO 80401-3393 

 
8. PERFORMING ORGANIZATION 

REPORT NUMBER 
NREL/TP-550-33954 
 

 
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 

 
10. SPONSORING/MONITORING 

AGENCY REPORT NUMBER 
 

 
11. SUPPLEMENTARY NOTES 

  
 
12a. DISTRIBUTION/AVAILABILITY STATEMENT 

National Technical Information Service 
U.S. Department of Commerce 
5285 Port Royal Road 

 Springfield, VA 22161 

 
12b. DISTRIBUTION CODE 

  

 
13.   ABSTRACT (Maximum 200 words)  An important factor in soil heat transfer that is often over looked is the effect of moisture, which 
can vary the effective thermal conductivity by a factor of ten.  The objective of this research was to investigate the ground-
coupled heat and moisture transfer from buildings, and to develop results and tools to improve energy simulation of ground-
coupled heat transfer. 
 

15. NUMBER OF PAGES  
 

14.  SUBJECT TERMS 
ground-coupled heat transfer; heat transfer; buildings; thermal conductivity; moisture 
transfer. 

 

 
16. PRICE CODE 

 
 
17. SECURITY CLASSIFICATION 

OF REPORT 
Unclassified 

 
18. SECURITY CLASSIFICATION 

OF THIS PAGE 
Unclassified 

 
19. SECURITY CLASSIFICATION 

OF ABSTRACT 
Unclassified 

 
20. LIMITATION OF ABSTRACT 

 
UL 

  NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. Z39-18 
 298-102 
 


	TABLE OF CONTENTS
	Acknowledgments
	List of Figures
	List of Tables
	Nomenclature

	Executive Summary
	Chapter 1: Introduction
	1.1. Background
	1.2. Organization of Report

	Chapter 2: Literature Review
	2.1. Introduction
	2.2. Experimental Work in Building Ground-Coupled Heat Transfer
	2.3. Analytic Solutions to Ground-Coupled Heat Transfer
	2.4. Design Calculation Methods
	2.5. Numerical Models of Building Ground-Coupled Heat Transfer
	2.6. Effects of Ground Cover
	2.7. Summary

	Chapter 3: Review of Soil Physics
	3.1. Introduction
	3.2. Heat Transfer Paths in Soil
	3.3. Hydraulic and Thermal Properties of Soil
	3.3.1. Soil Moisture Retention
	3.3.2. Hydraulic Conductivity
	3.3.3. Temperature Effects on Hydraulic Properties
	3.3.4. Thermal Conductivity
	3.3.5. Effects of Freezing


	Chapter 4: Model Development
	4.1. Introduction
	4.2. Coupled Heat and Moisture Transfer Model
	4.2.1. Liquid Transfer
	4.2.2. Vapor Transfer
	4.2.3. Total Moisture Transfer
	4.2.4. Heat Transfer
	4.2.5. Freezing Model

	4.3. Boundary Conditions
	4.3.1. Energy Balance
	4.3.2. Moisture Balance

	4.4. Heat Transfer Model
	4.5. Finite Element Formulation
	4.6. Spatial and Temporal Discretization

	Chapter 5: Testing, Verification, and Validation
	5.1. Introduction
	5.2. Patch Test
	5.3. Two-Dimensional Heat Conduction Problem
	5.4. One-Dimensional Isothermal Infiltration Problem
	5.5. Comparison with Field Experimental Results
	5.6. Conclusions

	Chapter 6: Results
	6.1. Introduction
	6.2. Comparison of Soil Heat Transfer Terms
	6.3. Slab-on-Grade and Basement Heat-Transfer Simulation Parameters
	6.4. Effect of Surface Moisture on Slab-on-Grade Heat Transfer
	6.5. Effects of Surface Moisture on Basement Heat Transfer
	6.6. Effect of Groundwater Depth on Heat Transfer From a Basement
	6.7. Effect of Buildings on the Soil Moisture Field
	6.8. Effect of Freezing on Heat Transfer From a Basement
	6.9. Comparison of the Heat and Moisture Transfer Model with a Heat Transfer Model
	6.10. Comparison of the Heat Transfer Model with the Mitalas Method
	6.11. Comparison of the Heat Transfer Model with the ASHRAE Method

	Chapter 7: Conclusions and Recommendations
	7.1. Conclusions from Research
	7.2. Recommendations for Further Work

	References
	APPENDIX A: Derivation of the Heat-and-Moisture Transfer Equations
	APPENDIX B: Finite Element Formulation
	APPENDIX C: Material Properties
	APPENDIX D: Analysis of the Convective Heat Transfer Coefficient

