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ABSTRACT 

Using a band-structure method that includes bandgap 
correction, we study the chemical trends of the bandgap 
variation in III-V semiconductors and predict that the 
bandgap for InN is 0.85 ± 0.1 eV. This result suggests that 
InN and its III-nitride alloys are suitable for photovoltaic 
applications. The unusually small bandgap for InN is 
explained in terms of the atomic energies and the bandgap 
deformation potentials. The electronic and structural 
properties of the nitrides and their alloys are also 
provided. 

1. Introduction 
III-nitrides are usually considered as wide-band gap 

materials that have applications in devices such as 
ultraviolet/blue/green light-emitting diodes and lasers [1]. 
However, recent measurements suggest that the bandgap 
of wurtzite (WZ) InN is below 1.0 eV [2], much smaller 
than the 1.89 eV bandgap [3] widely accepted in the past 
to interpret experimental data [1] and to fit empirical 
pseudopotentials for modeling InN and related alloy 
properties [4]. If InN indeed has a less than 1.0 eV 
bandgap, which is even smaller than that for InP (1.4 eV), 
then InN and its III-nitride alloys could cover most of the 
solar spectrum range, and thus, are suitable for future-
generation photovoltaic applications. On the other hand, 
the low bandgap of InN also provides a challenge because 
it suggests that the InX (X=N, P, As, Sb) system does not 
obey the bandgap common-cation rule, which states that 
for common-cation semiconductors, the bandgap 
increases as the cation atomic number decrease. 

To predict the InN bandgap and understand the origin 
of the InN bandgap anomaly, we have performed band-
structure calculations using a semiempirical method based 
on local density approximation (LDA) [5]. We find that 
the bandgap of WZ InN is 0.85 ± 0.1 eV, in good 
agreement with recent experimental measurements, but 
much smaller than the previously reported value of 1.89 
eV. We show that the reason that InN has a smaller 
bandgap than InP is due to the much more electronegative 
N 2s orbital and the much smaller bandgap deformation 
potential for the ionic InN. To complete the study, we also 
calculated the electronic and structural properties of the 
III-nitrides and their alloys. 

2. Method of Calculations 
The LDA band-structure calculations in this study are 

performed using the fully relativistic, self-consistent, 
linearized augmented plane wave (LAPW) method [6]. 
The band structures are calculated at experimental lattice 
constants [7]. To correct the well-known LDA bandgap 
error, we added to the LDA potential a δ-like external 
potential inside the muffin-tin (MT) spheres centered at 

each atomic site α [8]: 

, (1) 

and performed the calculation self-consistently. This 
functional form of the correction potential is based on the 
observation that the LDA bandgap error is orbital 
dependent. To correct the bandgap error, one needs to 
have a potential that is more repulsive to the s orbital than 
to the p orbital. Because the p orbital has zero charge 
density at the nuclear site, whereas the s orbital has finite 
density at the nuclear site, a δ-like function centered at the 
nuclear site can increase the band gap. The parameters in 
Eq. (1) are fitted first to the available experimental energy 
levels and to the quasiparticle energies [9] at high-
symmetry k-points for AlP, GaP, and InP [8]. To improve 
the fit, empty spheres centered at tetrahedral sites are also 
used. The MT radii for the empty sphere are 2.05 a.u. 
The fitting parameters are given in Table I. The same 
parameters given in Table I are then used to predict the 
bandgaps of arsenides, antimonides, and nitrides. For the 
nitrides, however, we have to use smaller muffin-tin radii 
to avoid having overlapping MT spheres. In this case, we 
use RM T=1.68 a.u. for the empty spheres. This value is 
chosen to obtain the correct bandgap of GaN. The same 
parameters given in Table I are used to predict the 
bandgaps of AlN and InN. To find the bandgap for the 
wurtzite structure, we add the LDA-calculated bandgap 
differences between the WZ and zincblende (ZB) 
compounds to the calculated bandgap for the ZB 
compound. The overall bandgap uncertainty associated 
with this fitting procedure is estimated to be 0.1 eV. 

3. Bandgap of InN 
The predicted direct bandgaps at the Γ-point for the ZB 

and WZ III-V semiconductors are shown in Table II. 
These values are compared with available experimental 
data [7] and quasiparticle calculations [9]. We find that 
for nearly all the III-V semiconductors, the differences 
between the predicted and the experimental bandgaps are 
less than 0.1 eV. For InN, however, our predicted value of 
0.85 eV is much smaller than the previous experimental 
value of 1.89 eV, but it is in very good agreement with 
recent experimental measurements. 

Table I. Fitted parameters in Eq. (1) for group III and 
group V atoms. ES denotes empty sphere. 
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Table II. Calculated bandgaps and deformation potentials 
at Γ for ZB and WZ compounds at experimental (exp) 
lattice constants using the LDA and LDA-plus-correction 
(LDA+C) methods. The Eg

LDA+C values with an (*) are 
fitted values, whereas all the others are predicted values. 

4. Trends of the Bandgap of III-V Semiconductors 
Our calculations above show convincingly that the 

bandgap of InN is around 0.85 eV. However, this value is 
about 0.6 eV smaller than that of InP, thus contradicting 
the conventional wisdom that the bandgaps of common-
cation (or anion) compounds increase as the anion atomic 
number decreases. Table II shows that the common-anion 
rule indeed holds for the entire common-anion system. 
For the common-cation system, this rule holds for the Al 
and the Ga compounds, but fails for the In compounds. To 
understand the general trends of the bandgap variation in 
the common-cation system, we study the chemical and 
size contributions to the bandgap. For the chemical 
contribution, we calculate the bandgaps of Al, Ga, and In 
compounds at the fixed lattice constants of AlP, GaP, and 
InP, respectively. The results are shown in Table III. LDA 
corrections are included. We find that at the phosphide 
volume, the bandgaps of the common-cation system 
decrease from MSb to MP to MAs to MN (M=Al, Ga, and 
In), following the same trend of the anion atomic valence 
s orbital energies shown in Table IV. This is because the 
conduction band minimum at the Γ-point is an anion s 
plus cation s state. The anion contribution increases as the 
compound becomes more ionic. Thus, the bandgaps of the 
common-cation compounds at fixed volume generally 
follow the same trend of the valence s orbital energies of 
the anion. Because the N 2s orbital energy is 5.3 eV, 3.8 
eV, and 4.4 eV lower in energy than the Sb 5s, As 4s and 
P 3s orbital energies, respectively, the bandgap of the 
nitrides are also lower than the corresponding antimonies, 
asenides, and phosphides at fixed lattice constant. 

Table III. Calculated (LDA+C) direct bandgaps (in eV) 
at Γ for zincblende Al, Ga, and In compounds at their 
equilibrium (eq) lattice constants and at their respective 
phosphide lattice constants. 

Because the order of the bandgaps calculated at the 
fixed volume is generally opposite to what is observed at 
the equilibrium lattice constants, the chemical 
contribution alone cannot explain the experimentally 
observed trend in the bandgaps at equilibrium lattice 
constants. Next, we investigate the size or volume 
deformation contribution to the bandgap. The calculated 
volume deformation potentials [10] with the LDA 
correction for III-V semiconductors are also listed in 
Table II. We see that all the compounds have negative 
volume deformation potentials at Γ, i.e., when the volume 
decreases, the bandgap increases. Therefore, it is clear 
that the common-cation rule and the common-anion rule 
for the bandgap is mainly due to the large deformation 
potential of the III-V compounds. For example, at GaP 
lattice constant, the bandgap of GaSb is 0.81 eV larger 
than that of GaP. However, GaSb is about 34% larger in 
volume than GaP. So, with an average deformation 
potential of -8.4 eV, the bandgap of GaSb at its 
equilibrium lattice constant is about 2.05 eV smaller than 
the bandgap of GaP at its equilibrium lattice constant. The 
same situation applies to AlN and GaN: Even though AlN 
and GaN have much smaller bandgap than AlP and GaP 
at the lattice constants of AlP and GaP, respectively, their 
bandgaps are larger than the phosphides at their own 
equilibrium lattice constants (Table III). This is because 
AlN is 68% smaller than AlP and GaN is 58% smaller 
than GaP, and AlN and GaN have large bandgap 
deformation potentials [ag(AlN)=-10.4 eV and ag(GaN)=­
7.8 eV]. However, for InN, although its volume is about 
49% smaller than InP, its bandgap deformation potential 
is small, ag(InN)=-4.2 eV. Because of this small |ag|, the 
contribution due to the size or deformation potential is not 
sufficient to reverse the order of the bandgap due to the 
contribution of the chemical effect. This explains why 
InN has a smaller bandgap than InP. 

Table IV. Calculated atomic s and p orbital energies (in 
eV) for group III and group V elements. 
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5. Material Properties of III-Nitride Alloys 
The small bandgap of InN suggests that InN and its III-

nitride alloys could be suitable materials for photovoltaic 
applications. To see how the material properties of the 
alloys vary as a function of the alloy concentration, we 
have calculated the ground-state structural properties, 
band-structure parameters, mixing energies, optical 
bowing parameters and band offsets of the III-nitrides and 
their alloys. For the random alloy at x=0.5, we use the 
special quasirandom structure (SQS) approach, where 
ordered alloy with atomic correlation functions close to 
that of the random alloy are used to represent the random 
alloys. 

Table V shows our calculated structural parameters and 
valence-band splittings of the binary nitrides. Table VI 
gives the calculated mixing energy and optical bowing 
parameters at x=0.5 and the valence-band offsets between 
AlN, GaN, and InN. We find that (i) the LDA calculated 
structural parameters are in very good agreement with 
experiment [7]. AlN and InN show significant deviation 
from the ideal wurtzite WZ structure parameters [11]. (ii) 
The crystal-field splitting ∆ CF is very sensitive to the 
internal structural parameter u and the c/a ratio. Because u 
and c/a for WZ AlN differ significantly from the ideal 
value (u=0.375 and c/a=1.632), it has a very large and 
negative ∆ CF, i.e., for AlN, the Γ 1v state is higher in 
energy than the Γ6v state. This reversal of the band-edge 
states in AlN is responsible for the unusual optical 
polarization observed in this compound [12]. (iii) Spin-
orbit splittings ∆0 are small for all the three binary nitrides 
mostly due to the small atomic number of nitrogen. (iv) 
The binary compound is more stable in the WZ structure, 
in agreement with experiment. The calculated alloy 
mixing energy ∆Hmix increases as the lattice mismatch 
increases. The large mixing energies between AlN/InN 
and between GaN/InN suggest that these two systems are 
difficult to mix. (v) The optical bowing parameter b [8] is 
also proportional to the size and chemical mismatch of the 
constituents. It is relatively small for Al0.5Ga0.5N, but is 
large for Al0.5In0.5N. (vi) The absolute energy of the 
natural-valence band edge increases from AlN, GaN, to 
InN. The relatively large band offset compared to other 
common-anion III-V system is mostly due to the stronger 
p-d repulsion and ionicity in the nitride system [11]. 

Table V. Calculated structural and band parameters for 
the binary nitrides. The structural parameters are 
compared with experimental data (in parentheses). ∆E12 

and ∆E13 are the valence-band splittings at the Γ point. 

Table VI. Calculated alloy mixing energy and the optical 
bowing coefficient at x=0.5 and the valence-band offsets, 
between AlN, GaN, and InN. 

6. Summary 
In conclusion, using an LDA band-structure method 

with bandgap correction, we have shown that InN has a 
bandgap of 0.85 ± 0.1 eV. This result indicates that InN 
and its III-nitride alloys could be suitable for future PV 
applications. We have also calculated the structural and 
band parameters of the binary nitrides, as well as the 
valence-band offsets, alloy mixing energies and the 
optical bowing parameters of the nitride alloys. These 
properties can be used for modeling solar cells. 
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acknowledge X. Nie, I. G. Batyrev, P. Carrier and 
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