Laboratory facilities, like the National Renewable Energy Laboratory’s Solar Energy Research Facility, are energy intensive. So the main challenge for the design team was to find efficient ways to heat, cool, light, and ventilate to meet the exacting requirements of the laboratory settings while still maintaining comfort and pleasant conditions in the office spaces.

Designers used a whole-building approach — looking at the way the building’s site, windows, walls, floors, and electrical and mechanical systems could work together most efficiently. Blending architecture and energy efficiency, designers took advantage of the south-sloping site by situating the offices to the south and partly earth-sheltering the labs to the north. A stair-step configuration for the building allows daylight and heat into the office areas, while the laboratories in the back of the building are in a more controlled environment where tight levels of ventilation, humidity, temperature, and light are critical. A unique mechanical system makes the most of the natural environment and the building’s design to efficiently heat and cool the building at an annual utility bill savings of almost $200,000 per year.

With innovation and dedication to the tenets of renewable energy and energy efficiency, the Solar Energy Research Facility has become not only a laboratory to explore ways to turn the sun’s light into electricity and power, but also a building that puts the laboratory’s research into action.
Building Envelope
Using whole-building design, an energy-efficient building is designed with many features that work together to improve the quality and efficiency of lighting, heating, cooling, and ventilation. The unique, stair-step design of the Solar Energy Research Facility (SERF) is a feature of the building—blending architecture with energy efficiency. The design provides solar heat in winter, shade in the summer, and diffuses daylight throughout the year. A flexible, modular design incorporates three contiguous segments to make good use of sunlight for heating and daylighting while minimizing cooling.

Lighting
Stepped clerestory windows bring daylight inside to illuminate office areas and brighten the corridors that divide offices from laboratories. The recessed clerestories scatter the sunlight to reduce glare, creating a light that is softer than electric light and resulting in a pleasant environment. Because of the windows’ exterior overhang and inside light ‘shelves,’ indirect sunlight enters the building to provide quality light year-round.

Sunlight is shared with interior hallways and offices through strategically placed windows and curved alcoves that reflect light into the space. Daylighting minimizes the need for electric lighting, decreases the amount of power used, and reduces cooling costs that would be incurred to manage the heat produced by electric lights.

Very efficient lights, including T-8, compact fluorescents, and metal halide save an additional $10,000 a year. Designers saved even more electricity by using on-demand lighting, where motion sensors automatically turn lights off when nobody is using them. Lights turn on automatically when someone walks into a laboratory and turn off when the last person leaves.

Cooling
In a conventional building, mechanical chillers cool the water that is used to cool the air and equipment. But the SERF uses indirect evaporative cooling to help the water-cooling process and save energy. In addition, the SERF uses direct evaporative cooling to lower air temperature and increase humidity. The cool air is distributed throughout the building, limiting the need for conventional cooling systems that consume more energy.

Automatic window shades and overhangs help keep offices cool by shading light and heat during the hottest parts of the day.

Ventilation
As a safety precaution, the SERF’s ventilation system completely exchanges the air in the laboratories as many as 12 times an hour. This requirement causes large heating and cooling loads to condition outside air. Rather than just exhaust the warm air from the building, the SERF’s exhaust heat recovery system uses a heat exchanger to capture the energy exhausted from the laboratories. This captured energy is used to condition fresh, incoming air. The system displaces about 50% of the energy that would have to be used to heat and cool the incoming air.

Variable-speed fans carefully maintain building pressure and temperature while saving energy.

Photovoltaics
Two 6-kilowatt arrays of photovoltaic panels are installed on south-facing roof areas on the SERF. The photovoltaic system is tied directly to the building’s electrical supply. The solar panels are integrated with the building design.

Heating
To help heat part of the building, the SERF’s design includes a Trombe wall along the south face of the building. This 16-inch-thick, concrete wall is coated with a dark, heat-absorbing material, and is covered with glass. The coating absorbs heat from the sun. When the massive wall heats up, its radiant energy is transmitted to the inside of the building in winter. The radiative effect provides comfort without heating the environment. A hot water boiler provides heat for the offices and laboratories.
Preparation, talent, and teamwork contribute to high performance. Designing high-performance, energy-saving buildings is no different. Designers use computers to simulate energy use throughout the design process, finding the most energy-efficient design. Whole-building design examines how a building interacts with its systems, activities, and surrounding environment. By optimizing the building’s standard components — site, windows, walls, floors, and mechanical/electric systems — building owners can substantially reduce energy use without increasing construction costs.

More Information

The following table shows some of the energy-efficient features of the building.

Key Energy-Efficiency Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall insulation</td>
<td>R-value = 22</td>
</tr>
<tr>
<td>Roof insulation</td>
<td>R-value = 35</td>
</tr>
<tr>
<td>Windows E&W</td>
<td>U-value 0.31; Solar heat gain coefficient 0.43</td>
</tr>
<tr>
<td>Windows other</td>
<td>U-value 0.48; Solar heat gain coefficient 0.57</td>
</tr>
<tr>
<td>Daylight</td>
<td>South light shelves, overhangs, photo sensors</td>
</tr>
<tr>
<td>Electric lights</td>
<td>T-8, compact fluorescents, metal halide, occupancy and daylight sensors</td>
</tr>
<tr>
<td>Fans and pumps</td>
<td>High efficiency variable frequency drives</td>
</tr>
<tr>
<td>Heat recovery for vent air</td>
<td>50% to 60% energy recovered</td>
</tr>
<tr>
<td>Cooling</td>
<td>Direct and indirect evaporative, chiller backup</td>
</tr>
<tr>
<td>Heating</td>
<td>Direct gain, Trombe wall, gas fired hot water</td>
</tr>
<tr>
<td>Photovoltaics</td>
<td>12 kilowatts</td>
</tr>
</tbody>
</table>

Photo Credits: Warren Gretz, NREL
Cover — PIX03370 and PIX01159
Back cover — PIX03869 and PIX03523

Contacts

U.S. Department of Energy

Energy Efficiency and Renewable Energy Clearinghouse (EREC)
1-800-DOE-3732
www.eren.doe.gov

Building Technologies Program
www.highperformancebuildings.gov

National Renewable Energy Laboratory
Center for Buildings and Thermal Systems
www.nrel.gov/buildings/highperformance

Produced for the U.S. Department of Energy by the National Renewable Energy Laboratory, a DOE national laboratory
DOE/GO-102002-1648
October 2002

Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 20% postconsumer waste