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A promising low-cost reflector material for solar concentrating power (CSP) generation is a 
silvered substrate protected by an alumina coating several microns thick.  The alumina hard coat 
is deposited under high vacuum by ion-beam-assisted-deposition (IBAD). Samples of this 
material have been produced both by batch and continuous roll-coating processes.  The substrate 
materials investigated were polyethylene terephthalate (PET), PET laminated to stainless-steel 
foil, and chrome-plated carbon steel strip. The advantage of steel strip compared to PET is that it 
withstands a higher process temperature and lowers the final product installation costs. In this 
paper, we compare the durability of batch and roll-coated reflective materials with an alumina 
deposition rate as high as 10 nm/s. In general, the durability of the samples is found to be 
excellent. Comparisons between accelerated and outdoor exposure testing results indicate that 
these front-surface mirrors are more susceptible to weather conditions not simulated by 
accelerated tests (i.e., rain, sleet, snow, etc.) than other types of solar reflectors.  For long-term 
durability edge protection will be necessary and durability could be improved by the addition of 
an adhesion-promoting layer between the silver and alumina. 

INTRODUCTION 

CSP systems convert thermal energy collected from sunlight concentrated by large solar 
reflectors into electricity. Their widespread application depends in part on developing a durable, 
low-cost reflector. The goal is to produce a reflector having a specular reflectance that remains 
above 90% for at least 10 years under outdoor service conditions, and a large-volume 
manufacturing cost of less than $10.80/m2 [1]. The National Renewable Energy Laboratory 
(NREL) has funded Science Applications International Corporation (SAIC) in McLean, VA, 
since 1995 to develop a promising low-cost reflector. The advanced solar reflective mirror 
(ASRM) under development consists of an optically transparent alumina coating deposited over a 
silvered polymer or metal-foil substrate, as shown in Fig. 1. A copper film is used to increase 
adhesion between the silver film and the substrate. The dense morphology of the alumina top 
coating, which is essential for sustained high reflectance during outdoor service, is produced by 
IBAD. 
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Top Protective Layer (0.5-4 µm Al2O3) 

Reflective Layer (100 nm Ag) 

Metal Back Layer (50 nm Cu) 

Substrate or(PET) 
Chrome-Plated Steel 
(203 µm, 8 mils) 

Fig. 1: Structure of advanced solar reflective material. 

Solar reflective materials are optically characterized prior to exposure testing and 
periodically remeasured as a function of exposure time to assess optical durability.  Spectral 
hemispherical reflectance of samples is measured using dual-beam ultraviolet-visible-near infrared 
(UV-VIS-NIR) spectrophotometers.  An integrating-sphere attachment allows the absolute 
reflectance to be measured as per ASTM E903-82 with a secondary reflectance standard (traceable 
to the National Institute of Standards and Technology) [2]. The solar-weighted hemispherical 
reflectance, ρ2π, weighted across the entire solar spectrum (λ=250 to 2500 nm), is a meaningful 
single measure of optical performance, where the spectral measurement is convolved with and 
normalized by the terrestrial solar spectrum [3]. The samples were subjected to outdoor and 
accelerated exposure testing until their hemispherical reflectance falls below 20% of their initial 
values. Typically, outdoor exposure testing (OET) was only done at NREL in Golden, CO. In 
some cases, in addition to NREL’s OET work, OET was performed at four other outdoor 
exposure sites: Tempe, AZ (APS); Miami, FL (FLA); Sacramento, CA (SMUD); and Fort Davis, 
TX (TX). Operational exposure sites are fully equipped with appropriate meteorological and 
radiometric instrumentation and data-logging capability to allow monitoring of site-specific 
environmental stress conditions experienced by weathered samples. OET samples are frequently 
measured as received (i.e., dirty) and after washing (i.e., clean) which results in a saw-tooth 
pattern of performance vs. time of exposure.  Accelerated exposure testing (AET) occurred in an 
Atlas Ci65 WeatherOmeter (WOM) (Ci65), Atlas Ci5000 WOM (Ci5000), and a 1-kW solar 
simulator (1 kW-SS). The accelerated weathering chambers allow control and monitoring of 
light intensity, relative humidity (RH), and temperature (T). Typical conditions are T = 60°C and 
RH = 60% for the Ci65 and Ci5000. Each chamber can accommodate a large number (~200-300) 
of samples (roughly 67 mm x 44 mm) at the same time with simulated solar irradiance levels of 
roughly 1-2X. A single day of testing (24 hours) is roughly equivalent to three times the outdoor 
exposure in terms of light intensity for the Ci65 and six times for the Ci5000. The solar simulator 
uses a filtered xenon-arc light source and can achieve intensities of about 2 - 5 times the outdoor 
exposure in a wavelength band between 300 and 450 nm. The 1 kW-SS operates at 80°C and 
80% RH and can accommodate four 25.4-mm x 25.4-mm or eight 12.7-mm x 25.4-mm samples. 
A sample whose durability has been well characterized, ECP300/Al, was included in the 1kW-SS 
as a control. 

DURABILITY OF BATCH-COATED SAMPLES 

The first samples of solar reflective material were produced on PET film (76.2 µm thick) 
substrate in a 66-cm-wide box coater by batch processing with an alumina deposition rate of 1 
nm/s. The details of the sample production and testing have been previously reported [2]. An 
important piece is the reactive gas used in the ion source. Alumina coatings crack when 
produced with oxygen, but alumina coatings produced with proprietary reactive gas do not crack. 
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The samples have maintained a high (95%) hemispherical reflectance even after 3600 hours of 
accelerated exposure testing in a 1 kW-SS exposure chamber, and after 5 years of outdoor 
exposure at NREL and Ci65 exposure testing. The reflectors with the thickest alumina coating (4 
µm) exhibited the greatest durability. 
 A high deposition rate is necessary to reduce production costs [3].  he goal was to 
increase the deposition rate while maintaining optical durability.  ing 1998 and 1999, a series 
of samples were batch coated in a larger coating chamber. The alumina deposition rate was 
increased for these samples from 1 nm/s to 22.5 nm/s.    samples prepared with a deposition 
rate as high as 10 nm/s are well adhered and transparent. These have maintained high 
hemispherical reflectance for 36 months of accelerated Ci65 exposure testing  (Fig. 2). Samples 
prepared with properly optimized deposition parameters, have maintained high hemispherical 
reflectance for 42 months of outdoor exposure at NREL (Fig. 3).  Funding constraints prevented 
optimization of the deposition parameters at each incremental deposition rate.  nsequently, the 
outdoor reflector durability was poor for about half of the samples shown in Fig. 3.  For example, 
in the 7 nm/s deposition rate case, the samples had insufficient ion assist and the durability was 
unsatisfactory.  The 11.5 nm/s sample was not completely oxidized, as indicated by lower 
hemispherical reflectance. The alumina coating on the 22.5 nm/s sample was tinted brown at the 
center due to insufficient oxidation, but clear at the edge.  he process was not optimal because 
there were also tensile cracks in the coating.  This is an indication of excessive residual tensile 
stress. Despite the brown tint, the 22.5 nm/s samples have maintained high hemispherical 
reflectance after 9 months of exposure outdoors at NREL and in the Ci65.  Comparing Figs. 2 
and 3, samples produced with non-optimal process conditions show reduced durability outdoors, 
but display no significant durability loss in the Ci65.   

 All of the samples were inadvertently 
known to be extremely harsh.  ples th
edges, particularly after snowstorms. The outer 1
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best to worst, is: 1 kW-SS, Ci65, TX, APS, NREL, SMUD, and FLA. APS, TX, and the 1 kW-
SS are similar in that no degradation is observed in the hemispherical reflectance of the ASRM. 
This is quite unusual compared to other reflectors (e.g. polymer, glass, and aluminum). 
Typically, accelerated exposure is more severe than outdoor exposure [i.e., 1 kW-SS 
(~5xNREL), Ci5000 (~6xNREL), and Ci65 (~3xNREL)]. Normally, the most severe outdoor 
sites are FLA and APS; TX is intermediate, and SMUD and NREL are the least severe sites (Fig. 
6) [6]. FLA has the highest total precipitation and relative humidity of the OET sites, shown in 
Table 1, followed by SMUD and NREL; TX and APS have the lowest. NREL has the lowest 
minimum monthly ambient temperature and the largest difference between the maximum and 
minimum monthly ambient temperature. In contrast to polymer and glass reflectors, because of 
this combination of humidity, precipitation, temperature extremes, and snow, outdoor exposure at 
NREL, SMUD, and FLA is more stressful for front-surface reflectors than AET, as can be seen 
in Figs. 4 and 5. 
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Fig. 6: Solar-weighted hemispherical reflectance of 
3M ECP-305+ polymer reflectors as a function of 
accelerated 1 kW-SS and Ci65 and outdoor 
exposure at APS, FLA, NREL, SMUD, and TX. 
4 
Fig. 5: Solar-weighted hemispherical reflectance 
of  batch-coated alumina front-surface reflectors 
with 3-µm Al2O3 deposited at 11.5 nm/s as a 
function of and outdoor exposure at APS, FLA, 
NREL, SMUD, and TX. 
Fig. 4:  Solar-weighted hemispherical reflectance 
of  batch-coated alumina front-surface reflectors 
with 1.5-µm Al2O3 deposited at 2 nm/s as a 
function of accelerated 1 kW-SS and Ci65 and 
outdoor exposure at APS, FLA, and NREL. 



Table 1: Summary of OET Meteorological Data [6, 7] 

Site 	Average Average Average Average Average Average Max, Yearly 
Yearly Max, Min Day, Yearly Max, Min Yearly Min Total 
Total Monthly Night Tambient Monthly Total Monthly UV 
Precip. Precip. Yearly Tambient Solar Total 

RH Solar 
(mm)  (mm) (%) ( deg C) ( deg C) (MJ/m2) (MJ/m2) (MJ/m2) 

APS 25.4 
2.54 

50 
23 22.6 34.2 

12.0 5759.1 1056.4 
144.9 219.9 

FLA 236.2 
45.7 

83 
61 24.4 28.2 

19.6 3731.8 631.6 
304.6 164.5 

NREL 60.7 
12.7 

67 
40 10.11 25.8 

-1.7 6124.7 701.6 
452.6 277.3 

SMUD 94.0 
2.5 

83 
46 16.0 24.3 

7.3 4074.7 771.9 
93.9 194.7 

TX 223.5 43.2 
7.6 

56 
28 17.3 27.9 

6.0 4245.8 754.2 
346.5 129.6 

195.6 

1419.9 

391.2 

444.5 

Environmental stress factors that cause degradation have been identified from outdoor 
and accelerated exposure tests [8]. For most solar mirrors, exposure during service to sunlight 
(particularly ultraviolet wavelengths), temperature, and moisture can lead to loss in reflectance. 
The relative severity of these stresses is generally in the order they were mentioned above. 
Degradation can also result from synergistic effects (e.g., photothermal, photohydrolytic). The 
unintentional failure to protect the edges was fortuitous, as the resulting flaking revealed a 
weakness in the ASRM structure (i.e., insufficient adhesion between alumina and silver) and 
probable solution (i.e., edge protection and adhesion-promoting layer), which had not been 
indicated by the accelerated or outdoor (with edge protection) exposure testing used to date. In 
general, the durability of the alumina reflectors appears to depend on the type and amount of 
precipitation at the site (Table 1) and not on the solar radiation; therefore, outdoor exposure is 
more stressful to front-surface reflectors than accelerated exposure. The accelerated test 
chambers do not provide qualitative simulation of outdoor test results for front-surface reflectors. 
An accelerated test that incorporates cyclic precipitation or a humidity-freeze-thaw cycle 
(believed to be an important stress factor for these materials) needs to be developed. Edge 
protection will be necessary for long-term durability, and an adhesion-promoting layer between 
the silver and the alumina could improve the durability of the reflector. 

DURABILITY OF 10-nm/s ROLL-COATED SAMPLES 

During 2001, the transition was made from batch to roll-coating sample preparation. A 
web-handling machine was incorporated into the high-vacuum chamber previously used for 
batch coating of ASRM to make a laboratory-scale roll-coater. The basic design of the web-
handling machine is two reels and a cooled drum. A coil of substrate material up to 35.5 cm wide 
unwinds from a payoff reel, wraps over a cooled drum, and winds onto a take-up reel (Fig. 7). 
The construction and operation of the laboratory-scale roll-coater was previously presented [9]. 
The substrate material chosen for the roll-coater was chrome-plated steel strip (from American 
Nickeloid Company). One of its advantages is a higher threshold to thermal damage than for 
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example, PET. The material is available in 0.92-m-wide rolls as thin as 203 mm (8 mils), and 
costs about $7.60/m2 in volume. 
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flakes are removed. If a f
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achieved. Because earlier sa
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concepts were used for sam
approach was to apply 3M T
review of the literature and d
(Spectraseal ACL1307) inte
protectant. The third edge pr
testing to determine the relati
Fig. 7:  Web-handling machine mounted inside high-
vacuum chamber. A substrate material is wound over
the cooled drum in the center. The take-up reel on the 
right is about 33 cm in  diameter. 
ere performed using the roll-coater with an alumina deposition rate 
to achieve the same durability as earlier batch-coated samples. A 
d in Table 2. For each run, a length of strip equivalent to two loops 
. On June 6 and June 25 , the first and second loops had different 
mina film thickness was calculated by fitting measured 

e spectra to predicted reflectance values from a thin-film analysis 
ple demonstrated that good adhesion of silver to chrome-plated steel 
ting layer. Copper was used in all cases except the 25June01-2 
sed instead. 
haracterized by hand flexure of a narrow strip of material. When 
re coating stack remains adhered. When adhesion is poorer, coating 
lake curls with the alumina side exposed, the coating is under 
copper side is exposed, the coating is under tensile stress. By 
 parameters, the desired neutral stress of the alumina coating can be 
mples had demonstrated the need for edge protection, replicate 

trips of materials for durability testing and several edge-protection 
ples exposed outdoors at NREL and in the Ci500 WOM. One 
edlar tape around the periphery of the mirror as a protectant. After 
iscussions with window and glass mirror vendors, a CPFilm product 
nded as window sealant was recommended as a promising edge 
otection (“none”) was used as a benchmark to compare with earlier 
ve effectiveness of edge-protection strategies. 
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Table 2: Samples Produced in Roll-Coater 

Run Date Coating Structure 

29May01 Al2O3/Ag

01June01 Al2O3(1.4µm)/Ag/Cu

06June01-1 Al2O3(2µm)/Ag/Cu

06June01-2 Al2O3/Ag/Al2O3


10June01 Al2O3/Ag/Cu 

20June01 Al2O3(1.6µm)/Ag/Cu 
25June01-1 Al2O3(3µm)/Ag/Cu 
25June01-2 Al2O3(3µm)/Ag/Cu 

Alumina Web Ion Stress Adhesion Appearance 

Deposition Speed Source 

Rate [cm/min] Gas 

[nm/s]

6.5 3.2 O2/Ar Bad Flaking

5 3.2 PG ++ Good Clear 

5 3.2 PG 0 Good Clear 

5 3.2 PG 0 Poor Discharge 


damage, 
brown tint 

10 6.3 PG + Excellent Clear, brown 
tint area 

7-10 5 PG + Excellent Brown tint 
10 5 PG 0 Good Clear 
10 5 O2 - Poor Clear 

Ion Source Gas: PG=propriety gas 

Residual Stress:  (+)=compressive, 0=neutral, and (-)= tensile 

Adhesion:  Bad=delaminated; Poor=flaking; Good=adhered but flakes when flexed; Excellent=no flaking

when flexed.


The initial optical performance of roll-coated samples matched earlier batch-coated 
samples. The initial solar-weighted hemispherical reflectance was 95%-96%, except for 
06June01-2 and 25June01-2 samples. Both of these samples had lower initial reflectance and 
also were less durable in accelerated and outdoor exposure, as shown in Figs. 9, 10, and 11. The 
variable performance of these two samples, demonstrated by the large error bars, is consistent 
with the poor adhesion exhibited by these samples. Sample 06June01-2 was produced with an 
alumina adhesion layer and was tinted brown with discharge damage.  Discharge damage caused 
by the electrical discharge breakdown of the plasma appears as white streaks similar to 
lightening. Sample 25June01-2 was produced using oxygen as the ion-source feed gas. Both 
samples showed a drop in performance after 3.5 months outdoors in Colorado, with the largest 
drop shown by the 06June01-2 sample. Between 3 and 7 months, the performance of the 
01June01, 10June01, and 20June01 samples degraded, and the 20June01 sample had the poorest 
performance outdoors. The 06June01-1 and 25June01-1 samples were unchanged after 7 months 
of outdoor exposure. The 25June01-2 sample was the only one to show a drop in performance 
after 2 months of exposure in the Ci5000. There are small changes in performance after 7 
months of exposure in the Ci5000 for the 10June01, 25June01-1, and 06June01-1 samples. The 
performance is relatively unchanged for the samples exposed in the 1 kW-SS exposure chamber, 
continuing to demonstrate that for front-surface reflectors, durability is more significantly 
stressed outdoors. The next-highest stress is in the Ci5000, then the 1kW-SS. The samples 
deposited at 10 nm/s on the roll-coater that showed the best durability were those made with the 
proprietary gas. However, it should be noted that the backsides of the samples exposed outdoors 
started to rust. In the case where the alumina had a pinhole, rust would erupt on the front surface 
at the pinhole. The cause of the pinholes is being pursued. The chrome-plated carbon steel strip 
may not be durable enough for long-term use; chrome plating both sides of the carbon steel or 
substituting a stainless-steel foil substrate might prevent the rust. To date, the beneficial results 
of the edge protection schemes are inconclusive but edge tape and no edge protection are usually 
better than the CPFilm product. 
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SUMMARY AND FUTURE PLANS  
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by accelerated tests (e.g., rain, sleet, and snow). An accelerated test that simulates a greater 
number of relevant outdoor conditions needs to be developed. Edge protection will be necessary 
for long-term durability. An adhesion-promoting layer between the silver and alumina could 
improve durability.  Most recently, the alumina deposition rate has been increased to 20 nm/s in 
roll-coated samples. The analysis of this material has just begun. Other interests are to 
incorporate an anti-soiling layer, metal adhesion layers other than copper, an adhesion-promoting 
layer, and edge-protection schemes. Future plans also include to increase the deposition rate and 
to deploy the material in an existing concentrating solar power system. 

A cost model developed seven years ago showed that the deposition rate and thickness of 
the alumina coating strongly influence the unit cost of the solar-reflector material. It motivated us 
to transition from batch to roll coating, and increase the alumina deposition rate to 20 nm/s. The 
switch from PET to a steel substrate for the ASRM is a significant change from the original 
model. The cost of adhesion and anti-soiling layers were not included, and certain equipment 
costs were understated. To help commercialize the technology, NREL has initiated a subcontract 
to update the cost analysis. 
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