Electronic Structure and Doping of P-Type Transparent Conducting Oxides

Preprint

S.-H. Wei, X. Nie, and S.B. Zhang

To be presented at the 29th IEEE PV Specialists Conference
New Orleans, Louisiana
May 20-24, 2002
NOTICE

The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste
ELECTRONIC STRUCTURE AND DOPING OF P-TYPE
TRANSPARENT CONDUCTING OXIDES

Su-Huai Wei, Xiliang Nie, and S. B. Zhang
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.

ABSTRACT
Transparent conducting oxides (TCOs) are a group of materials that are widely used in solar cells and other optoelectronic devices. Recently, Cu-containing p-type TCOs such as $M^{III}Cu_{2}O_{2}$ ($M^{III}$=Mg, Ca, Sr, Ba) and CuM$^{III}O_{2}$ ($M^{III}$=Al, Ga, In) have been proposed. Using first-principles band structure methods, we have systematically studied the electronic and optical properties of these p-type transparent oxides. For $M^{III}Cu_{2}O_{2}$, we predict that adding a small amount of Ca into SrCu$_{2}$O$_{2}$ can increase the transparency and conductivity. For CuM$^{III}O_{2}$, we explained the doping and band gap anomalies in this system and proposed a new approach to search for bipolar dopeable wide-gap materials.

INTRODUCTION
Transparent conducting oxides (TCOs) are materials that are widely used in solar cells and other optoelectronic devices [1]. Almost all of the well-known TCOs, such as ZnO, In$_{2}$O$_{3}$, SnO$_{2}$, and their alloys, have n-type conductivity. The lack of p-type TCOs has severely limited the potential applications of these materials. Consequently, considerable efforts have been devoted to develop p-type TCOs and to understand the doping mechanism in these materials [2-7].

Recently, several Cu-containing p-type TCOs such as SrCu$_{2}$O$_{2}$ and CuM$^{III}O_{2}$ ($M^{III}$=Al, Ga, In) have been proposed [2,5-7]. The idea is based on the observations that Cu has shallow, occupied 3$d$ orbital that is close to the O 2$p$ orbitals. The coupling between the Cu 3$d$ states and the O 2$p$ states can lead to smaller ionization energies (which is equivalent to higher VBM) for these Cu compounds than for conventional oxides, thus, making it easier to dope them p-type.

Besides showing p-type conductivity, these materials also show some unique and unexplained physical properties [5-7]. For example, the optically measured direct band gap increases from 3.5 eV (CuAlO$_{2}$), to 3.6 eV (CuGaO$_{2}$), and to 3.9 eV (CuInO$_{2}$). This trend is in sharp contrast to the trend found in other group III containing semiconductors, in which the band gap decreases as the atomic number of the group III elements increases [8]. Furthermore, bipolar doping is achieved, but only in CuInO$_{2}$ by extrinsic dopants [7]. This is quite puzzling because CuInO$_{2}$ has the largest reported band gap [7]. No similar trend has ever been observed in any other semiconductors.

We have systematically studied the electronic and optical properties of these p-type transparent oxides. For $M^{III}Cu_{2}O_{2}$ ($M^{III}$=Mg, Ca, Sr, Ba), the trend of band gap variation of $M^{III}Cu_{2}O_{2}$ as a function of $M^{III}$ is explained in terms of atomic energy levels and atomic sizes of the $M^{III}$ elements. For SrCu$_{2}$O$_{2}$, the calculated effective masses for the conduction band states are found to be larger than those for the valence states, opposite to the trend in conventional semiconductors and n-type TCOs. We predict that adding a small amount of Ca into SrCu$_{2}$O$_{2}$ can increase the band gap and reduce the hole effective mass of SrCu$_{2}$O$_{2}$, therefore, increase the transparency and conductivity. For CuM$^{III}O_{2}$, we show that the doping and band gap anomalies in this system are results of a large disparity between the fundamental gap and the apparent optical gap, a finding that could lead to breakthroughs towards bipolarly dopeable wide-gap semiconductor oxides.

METHOD OF CALCULATION
The band structure calculations were performed using the first-principles local density approximation (LDA) as implemented by the general potential linearized augmented plane wave (LAPW) method [9]. We used the Ceperley-Alder exchange correlation potentials as parameterized by Perdew and Zunger [10]. The Ca 3$p$, Sr 4$p$, and Ba 5$p$ states, as well as the Ga 3$d$ and In 4$d$ states, are treated as valence states. Spin-orbit coupling is included when calculating the effective mass. The optical properties of these materials are studied by calculating the dipole momentum matrix element $P_{i,j}(k) = |<\psi_{i,k}|p|\psi_{j,k}>|^2$ and the absorption coefficient using the optical package in WIEN97 code [11].
RESULTS AND DISCUSSIONS

\( \text{M}^{II}\text{Cu}_2\text{O}_2 \)

\( \text{M}^{II}\text{Cu}_2\text{O}_2 \) has the tetragonal crystal structure with space group of \( \text{I}_{4}^{1}/\text{amd} \) (Fig. 1b). In this crystal structure, \( \text{M}^{II} \) atoms are at the center of a distorted octahedron formed by O atoms. The Cu atoms form the well-known O-Cu-O dumbbell configuration, which is similar to that of \( \text{Cu}_2\text{O} \) (Figure 1a). In fact, \( \text{M}^{II}\text{Cu}_2\text{O}_2 \) can be considered as being derived from \( \text{Cu}_2\text{O}_2 \), in which one Cu atom is removed for each unit of distorted \( \text{Cu}_2\text{O} \), plus an inter-penetrating body-centered tetragonal Sr sublattice.

![Figure 1](image)

Fig. 1. Crystal structure of (a) \( \text{Cu}_2\text{O} \) and (b) \( \text{M}^{II}\text{Cu}_2\text{O}_2 \).

The calculated band structure of \( \text{SrCu}_2\text{O}_2 \) at the experimental lattice constants along some high symmetry directions is shown in Fig. 2a. It shows that \( \text{SrCu}_2\text{O}_2 \) has a direct band gap at \( \Gamma \). Analysis of the electron density of states (DOS) [3] for \( \text{SrCu}_2\text{O}_2 \) indicates that the valence states consist of two major parts. The upper part from the valence band maximum (VBM) to \( E_{\text{VBM}} - 3 \) eV consists predominantly of the Cu 3d states. The lower part from \( E_{\text{VBM}} - 3 \) eV to \( E_{\text{VBM}} - 6 \) eV consists predominantly of the O 2p states. This is due to the fact that Cu 3d level is shallower than O 2p. Thus, the Cu-containing oxides such as \( \text{Cu}_2\text{O} \) have much higher VBM than other conventional oxides such as \( \text{ZnO} \), where the Zn 3d state is deeper than the O 2p state. Higher VBM also leads to higher p-type dopability, as suggested by the doping limit rule [12]. Comparing to \( \text{Cu}_2\text{O} \), we find that adding SrO into \( \text{Cu}_2\text{O} \) reduces the \( d-d \) coupling between the Cu atoms and raises the band gap by 1.31 eV, in good agreement with the experimental value of 1.22 eV.

In order to be transparent, a p-type TCO not only should have a large fundamental band gap, so no visible light absorption between the valence bands and the conduction bands can take place, but also should have no visible light absorption between the VBM and the bands below. We have calculated the momentum transition matrix elements between the VBM state and other states at \( \Gamma \) [3]. We find that, indeed, the dipole transition probabilities between the VBM and states within 4 eV below the VBM are negligible. This is because the on-site transition from the same angular momentum (such as O p to O p and Cu d to Cu d) is forbidden according to the classical selection rule. This explains the transparency for this p-type material.

A p-type TCO with good conductivity should also have high mobility, and thus, small hole effective mass. To test this, the electron and hole effective masses for the tetragonal \( \text{SrCu}_2\text{O}_2 \) are calculated along high symmetry lines parallel or perpendicular to the c direction. The results are shown in Table I. We find that for this p-type material, the effective mass of the conduction band minimum (CBM) is much larger than that of the VBM. Both the electron effective masses and the hole effective masses are anisotropic. The hole effective masses along the c-axis are much larger than the one perpendicular to the c-axis. These results indicate that for single crystal, which could be obtained by epitaxial growth, hole conductivity perpendicular to the c-axis will be much larger than that parallel to the c-axis.

To search for better p-type TCOs we have also calculated the band structures of \( \text{M}^{II}\text{Cu}_2\text{O}_2 \) with M=Mg, Ca, Sr, and Ba. The calculated band structures are plotted in Fig. 2b. All the four compounds show direct band gaps at \( \Gamma \) with \( E_g = 2.45, 3.01, 3.33, 3.30 \) eV, respectively, after the LDA correction [3]. We see that the variation of the band gaps of \( \text{M}^{II}\text{Cu}_2\text{O}_2 \) is non-monotonic. The band gaps increase from \( \text{MgCu}_2\text{O}_2 \) to \( \text{CaCu}_2\text{O}_2 \) to \( \text{SrCu}_2\text{O}_2 \), but becomes smaller when Sr is replaced by Ba. This trend of band gap variation of \( \text{M}^{II}\text{Cu}_2\text{O}_2 \) as a function of \( \text{M}^{II} \) can be understood by noticing that there are several states near the valence and conduction band edges, and each state has different dependence on atomic energy levels and volume deformation potentials [3]. The non-monotonic behavior is due to band crossing at the band edge: \( \text{MgCu}_2\text{O}_2 \), \( \text{CaCu}_2\text{O}_2 \), and \( \text{SrCu}_2\text{O}_2 \) all

| States | \( m_{\perp} \) | \( m_{||} \) |
|--------|----------------|----------------|
| \( \Gamma_2 \) | 2.40 | 0.44 |
| \( \Gamma_5 \) | 0.48 | 2.12 |
| \( \Gamma_7 \) | 0.57 | 1.27 |
| \( \Gamma_1 \) | 5.85 | 1.82 |
| \( \Gamma'_1 \) | 0.52 | 0.79 |
| \( \Gamma'_3 \) | 0.28 | 0.44 |

Table 1. Calculated effective masses \( \text{in} \ m_0 \) of \( \text{SrCu}_2\text{O}_2 \) at \( \Gamma \) along high symmetry lines parallel \( (||) \) or perpendicular \( (\perp) \) to the c directions. The results are calculated with spin-orbit coupling at experimental lattice constants. The states are labeled using semi-relativistic notations.
have the $\Gamma_3$ VBM state, whereas the VBM of BaCu$_2$O$_2$ is a $\Gamma_3$ state. Similarly, MgCu$_2$O$_2$ and CaCu$_2$O$_2$ have the $\Gamma_3$ CBM state and SrCu$_2$O$_2$ has the $\Gamma_1$ CBM state, whereas the CBM of BaCu$_2$O$_2$ has the $\Gamma_1$ symmetry.

We have also calculated the electron and hole effective masses at $\Gamma$ for states near the band edge of the $M^{II}$Cu$_2$O$_2$ compounds. We find that, in general, all the $M^{II}$Cu$_2$O$_2$ compounds have similar effective masses as for SrCu$_2$O$_2$. Both the electron and hole effective masses are anisotropic. The hole effective masses perpendicular to $c$ directions at VBM are relatively small for MgCu$_2$O$_2$, CaCu$_2$O$_2$, and SrCu$_2$O$_2$. Due to O-mediated coupling between Cu $d$ states, the effective masses also decrease when the unit cell volumes decrease from SrCu$_2$O$_2$ to CaCu$_2$O$_2$ to MgCu$_2$O$_2$.

Our calculated results show that for pure $M^{II}$Cu$_2$O$_2$, SrCu$_2$O$_2$ has the largest band gap, thus is likely to be the most transparent. The band gap could be increased slightly if a fraction of Ca ($x \sim 16\%$) is mixed into SrCu$_2$O$_2$ to form (Ca$_x$Sr$_{1-x}$)Cu$_2$O$_2$ alloys. Furthermore, our calculations show that due to larger $p-d$ and $d-d$ couplings in CaCu$_2$O$_2$, its VBM is also slightly higher in energy ($\sim 0.1$ eV) than the VBM of SrCu$_2$O$_2$. Based on the doping limit rule [12], CaCu$_2$O$_2$ should also be easier to dope p-type than SrCu$_2$O$_2$. Therefore, we predict that adding a small amount of Ca into SrCu$_2$O$_2$ can increase both the transparency and conductivity.

**CuM$^{III}$O$_2$**

CuM$^{III}$O$_2$ has a layered delafossite crystal structure with the space group of R3m. It is composed of O-Cu-O dumbbell layers in a hexagonal plane separated by an M$^{III}$O$_6$ edge-sharing octahedra layer (see Fig. 3).

![Fig. 3. The crystal structure of delafossite compounds CuM$^{III}$O$_2$.](image)

**Fig. 3.**

The calculated band structures at experimental lattice constants for CuM$^{III}$O$_2$ (M=Al, Ga, and In) are shown in Fig. 4. The following general trends are observed:

(i) All three compounds have indirect fundamental band gaps with the CBM at $\Gamma$ and the VBM on the $\Gamma$-F line near F, as indicated by the black circles in Fig. 4. The LDA-calculated indirect gaps are 1.97, 0.95, and 0.41 eV, respectively, for CuAlO$_2$, CuGaO$_2$, and CuInO$_2$.

![Fig. 4.](image)

**Fig. 4.** [a] to [c] are the calculated LDA band structures for CuAlO$_2$, CuGaO$_2$, and CuInO$_2$, respectively. Energy zero is at the highest valence band at $F$. The VBM is marked by the black circles. [d] to [f] are the corresponding transition matrix elements between the band edge states. The LDA band gap error of $\sim 0.8$ eV is not added in this plot.
(ii) The direct band gap at \( \Gamma \) decreases considerably from 2.93 for \( \text{CuAlO}_2 \), to 1.63 for \( \text{CuGaO}_2 \), to 0.73 for \( \text{CuInO}_2 \). It also decreases at \( Z \) from 4.32 to 3.12 to 1.89 eV. This is consistent with the trend in other group III containing semiconductors. The decrease of the band gap from Al to Ga to In is mainly an atomic size effect: the CBM states at \( \Gamma_1 \) and \( Z_{1c} \) (or \( Z_{2c} \)) have significant antibonding \( s \) character. As the volume increases from the Al to Ga to In compounds, the energies of the antibonding states are lowered.

(iii) The direct band gap at \( F \) increases from 2.95 for \( \text{CuAlO}_2 \), to 3.05 for \( \text{CuGaO}_2 \), and to 3.34 for \( \text{CuInO}_2 \). A similar trend is observed at \( L \): it decreases slightly from 2.68 for \( \text{CuAlO}_2 \) to 2.54 for \( \text{CuGaO}_2 \), then increases to 3.08 eV for \( \text{CuInO}_2 \). The increase of the gap at \( F \) (or \( L \)) from Al to Ga to In is also a size effect. The conduction band edge states \( F_{3c} \) and \( L_{3c} \) have most of their charge densities in the interstitial region. Thus when the volume increases, the energy levels of \( F_{3c} \) and \( L_{3c} \) also increase.

The experimentally observed optical gaps increase from 3.5 (\( \text{CuAlO}_2 \)), to 3.6 (\( \text{CuGaO}_2 \)), to 3.9 eV (\( \text{CuInO}_2 \)). This trend clearly contradicts the trend in the calculated fundamental direct gaps of 2.68 eV (\( \text{CuAlO}_2 \)), 1.64 eV (\( \text{CuGaO}_2 \)), and 0.73 eV (\( \text{CuInO}_2 \)), showing a decrease. To resolve this discrepancy, we have calculated the matrix elements for direct transitions between band edge states. The upper panel of Fig. 4 shows the results for \( \text{CuAlO}_2 \), \( \text{CuGaO}_2 \), and \( \text{CuInO}_2 \) at the \( \Gamma \), \( F \), \( L \), and \( Z \) points and in between. It reveals that direct transitions between \( \Gamma_{3c} \) and \( \Gamma_{1c} \), and between \( Z_{3c} \) and \( Z_{1c} \), are forbidden in the delafossite structure because both states have the same (even) parity. An important consequence is that absorption near the fundamental gap at \( \Gamma \) for \( \text{CuGaO}_2 \) and \( \text{CuInO}_2 \) is very small and barely increases with energy until transitions at the next critical point take place (which define an apparent optical band gap). The calculated apparent gap [4] is very much unchanged from \( \text{CuAlO}_2 \) to \( \text{CuGaO}_2 \), but increases by \(+0.4\) eV from \( \text{CuAlO}_2 \) to \( \text{CuInO}_2 \), in good agreement with experiment. The large differences in terms of the energy and transition matrix element between the fundamental direct gap and the apparent gap are the reason for the band gap anomalies seen in \( \text{CuM}^{III} \text{O}_2 \).

The p-type conductivity of \( \text{CuM}^{III} \text{O}_2 \) and the mysterious bipolar dopability of \( \text{CuInO}_2 \) can also be understood within the framework of equilibrium doping theory. According to the recently developed “doping limit rule” [12], the degree of self-compensation in a material correlates directly to its band edge positions with respect to others. A compound with higher VBM is easier to dope p-type, whereas a compound with lower CBM is easier to dope n-type. Our calculated band alignments [4] between the \( \text{CuM}^{III} \text{O}_2 \) show that the valence band offsets for this common-anion system are rather small. The VBMs for \( \text{CuGaO}_2 \) and \( \text{CuInO}_2 \) is about 0.17 eV higher than that for \( \text{CuAlO}_2 \) as a result of the coupling between the group III \( d \) orbitals and the \( O p \) orbital. Hence, p-type conductivity might be slightly easier to reach in \( \text{CuGaO}_2 \) and \( \text{CuInO}_2 \) than in \( \text{CuAlO}_2 \). However, the VBM for \( \text{CuGaO}_2 \) is 0.8 eV higher than \( \text{ZnO} \), which explains why \( \text{CuM}^{III} \text{O}_2 \) can be made into p-type TCOs, whereas it is difficult to achieve p-type \( \text{ZnO} \). On the other hand, due to a large volume deformation, the CBM of \( \text{CuInO}_2 \) is 1.48 eV lower than \( \text{CuAlO}_2 \). This explains why n-type conductivity can also be achieved in this nominally p-type material. Thus, a low CBM combined with a large apparent gap explains the puzzling combination of good transparency with bipolar dopability in \( \text{CuInO}_2 \). This finding provides a new avenue to achieving bipolar doping in wide-gap materials.

ACKNOWLEDGMENTS

This work was supported in part by U.S. Department of Energy, Grant DE-AC36-99GO10337.

REFERENCES

Electronic Structure and Doping of P-Type Transparent Conducting Oxides: Preprint

S.-H. Wei, X. Nie, and S.B. Zhang

National Renewable Energy Laboratory
1617 Cole Blvd.
Golden, CO 80401-3393

Using first-principles band structure methods, we have systematically studied the electronic and optical properties of these p-type transparent oxides. For $M^{II}Cu_2O_2$, we predict that adding a small amount of Ca into Sr $Cu_2O_2$ can increase the transparency and conductivity. For $CuM^{III}O_2$, we explained the doping and band gap anomalies in this system and proposed a new approach to search for bipolar dopable wide-gap materials.

Abstract (Maximum 200 words): Transparent conducting oxides (TCOs) are a group of materials that are widely used in solar cells and other optoelectronic devices. Recently, Cu-containing p-type TCOs such as $M^{II}Cu_2O_2$ ($M^{II}$=Mg, Ca, Sr, Ba) and $CuM^{III}O_2$ ($M^{III}$=Al, Ga, In) have been proposed. Using first-principles band structure methods, we have systematically studied the electronic and optical properties of these p-type transparent oxides. For $M^{II}Cu_2O_2$, we predict that adding a small amount of Ca into Sr $Cu_2O_2$ can increase the transparency and conductivity. For $CuM^{III}O_2$, we explained the doping and band gap anomalies in this system and proposed a new approach to search for bipolar dopable wide-gap materials.