Radiometric Calibrations, Measurements, and Standards Development at NREL

Preprint

D.R. Myers, A. Andreas, T. Stoffel, I. Reda, S. Wilcox, P. Gotseff, and B. Kay

To be presented at the NCPV Program Review Meeting
Lakewood, Colorado
14-17 October 2001

National Renewable Energy Laboratory
1617 Cole Boulevard
Golden, Colorado 80401-3393
NREL is a U.S. Department of Energy Laboratory
Operated by Midwest Research Institute • Battelle • Bechtel
Contract No. DE-AC36-99-GO10337
NOTICE

The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste
ABSTRACT

We describe proposed revisions to current reference standard spectral distributions used to evaluate photovoltaic device performance and durability of materials. Improvements in broadband outdoor radiometer calibrations reduce uncertainties in broadband radiometer calibrations. We report a method to quantify the rate of change of broadband radiometer responsivities as a function of integrated exposure to irradiance and thermal energy. The results of applying a vector of calibration factors or responsivities to field data to remove zenith-angle dependent errors in global solar radiation measurements are shown. We report on the relative sensitivity of radiometers to daily versus biweekly cleaning.

1. Proposed Revisions to Spectral Irradiance Standards

We have compared existing consensus standard spectral irradiance distributions [1-3] with measured spectra, and prepared a critical review [4] of the results and the needs of the photovoltaic (PV) and materials-degradation community for updated reference spectral distributions.

A moderately complex spectral model, SMARTS2 [5], is being used along with the complex MODTRAN [6] spectral model to develop and validate proposed revised reference spectra. Working with the American Society of Testing and Materials (ASTM) subcommittee G03.09 on Radiometry, we proposed the preliminary direct, global, and ultraviolet spectra shown in Figures 1-3.

We intend to make the SMARTS2 model available as an adjunct standard to the revised spectral standards. This will allow users to (1) reproduce the spectra at will, and (2) produce test spectra for different atmospheric conditions for performance comparisons and analysis.

2. Broadband Radiometer Calibration Improvements

We have updated the radiometer calibration and characterization (RCC) software used for broadband radiometer calibrations at NREL [7]. Improvements include a new graphical user interface and integrated calibration history database and reporting functionality. The new RCC processes responsivity data based on more accurate diffuse reference irradiance measurements and zenith-angle information. The resulting uncertainty in the new RCC responsivity results are about half of the older version, as seen in Figure 4.
3. Pyranometer Degradation and Cosine Corrections

We modeled the degradation of pyranometer responsivities as a function of cumulative irradiance and thermal exposure [8] with multilinear regressions of cumulative changes in responsivity versus cumulative irradiance (megaJoules) and temperature (cumulative degree-days, base 0°C). Four years of radiometer calibrations for pyranometers in the Kingdom of Saudi Arabia 12-station solar monitoring network were used. Figure 5 shows the correlation between predicted and measured responsivity degradation is better than 0.92.

RCC-generated pyranometer responsivity functions for the Saudi monitoring network station at the Solar Village, just outside Riyadh, were used to correct global solar radiation data for zenith-angle errors in the individual radiometers[9]. Table 1 shows 2% errors at high zenith angles, and 1% errors at small zenith angles accounted for.

Using a single pyranometer responsivity for zenith-angle 45° produces a 0.1% error in annual total solar radiation.

4. Pyranometer-Cleaning Study

Pyranometers and pyrheliometers are cleaned every 2 weeks at 25 sites in the Atmospheric Radiation Measurement (ARM) program. A control site is cleaned every day. The mean change in irradiance before and after cleaning for two years of one-minute global and direct irradiance data are shown in Table 2. We also show mean and standard deviation of the time rate of change for clear sky irradiiances; i.e., maximum rates of change.

<table>
<thead>
<tr>
<th>Table 1: Effects of Zenith-Angle Corrections on Global Irradiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zenith angle bin</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>0-9</td>
</tr>
<tr>
<td>9-18</td>
</tr>
<tr>
<td>18-27</td>
</tr>
<tr>
<td>27-36</td>
</tr>
<tr>
<td>36-45</td>
</tr>
<tr>
<td>45-54</td>
</tr>
<tr>
<td>54-63</td>
</tr>
<tr>
<td>63-72</td>
</tr>
<tr>
<td>72-81</td>
</tr>
<tr>
<td>81-90</td>
</tr>
<tr>
<td>Total (kWh)</td>
</tr>
</tbody>
</table>

Radiometers cleaned on a biweekly and daily basis show irradiance differences slightly greater than the mean rate of change of irradiance for one-minute clear sky data.

References