PROGRAM AND PROCEEDINGS

NCPV Program Review Meeting 2000

April 16–19, 2000
Adam's Mark Hotel
Denver, Colorado
NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.doe.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm
An STM Survey of As/Ge(mnn) and P/Ge(mnn) Surfaces

W.E. McMahon and J.M. Olson
National Renewable Energy Laboratory
1617 Cole Boulevard, Golden, CO 80401

ABSTRACT

This paper contains a few representative results of a scanning tunneling microscope (STM) survey of Ge surfaces after exposure to arsenic and phosphorous. PH3 (phosphine)- and As4-exposed surfaces remain flat, whereas AsH3 (arsine)-exposed surfaces can become nano-facetted due to etching. Some examples are given, and more general trends are discussed.

1. Introduction

Currently, high-efficiency GaAs/GaInP tandem cells are grown on Ge substrates. However, little is known about the nucleation of the initial layers on the Ge surface. One complication is that the initial nucleation surface is not clean Ge, but either arsenic- or phosphorous-exposed Ge. For this reason, we have conducted a study of the effect of arsenic and phosphorous exposure on Ge surfaces. In order to understand a range of technologically-relevant miscut directions, we have studied Ge(mnn) surfaces between (100) and (111).

2. Experimental Details

All surfaces were prepared in a metal-organic chemical vapor deposition (MOCVD) chamber under 50–70 torr of H2 carrier gas flowing at 6–8 L/min. The group V source was either PH3, AsH3 or background As4.

After preparation in the MOCVD chamber, samples were quenched to room temperature and transferred under vacuum to an ultra-high vacuum (UHV) chamber for study with low-energy electron diffraction (LEED), Auger electron spectroscopy (AES) and scanning tunneling microscopy (STM). All surfaces were studied as-quenched, with no additional surface preparation after leaving the MOCVD chamber.

3. Definitions

In this paper, the index (mnn) is limited to surfaces between (100) and (111), in other words, m > n. Figure 1 shows the relative orientations of the crystal surfaces to be discussed in this paper.

As/Ge refers to an arsenic-exposed Ge surface, while P/Ge refers to a phosphorous-exposed Ge surface, regardless of the source of arsenic or phosphorous. To specify the exact source of arsenic or phosphorous, a slightly different nomenclature is used. PH3:Ge, AsH3:Ge and As4:Ge denote a Ge surface which has been exposed to (respectively) phosphine, arsine and elemental arsenic. In this paper the As4:Ge surfaces were prepared by exposure to the background As4 in our MOCVD chamber.

4. Results

We have found that PH3:Ge(mnn) and As4:Ge(mnn) surfaces remain flat for the conditions we have studied, while AsH3:Ge(mnn) surfaces can be either flat or nano-facetted, depending upon the exact sample-preparation conditions. Here we will provide three specific examples, then discuss general trends.

4(a). PH3:Ge(311)

Figure 2 is an STM image of PH3:Ge(311). It is very flat, and has adopted an n x 2 reconstruction. The "2" refers to the width of the obvious rows, which have a spacing of 13.3 Å, while the "n" refers to the regularly-spaced breaks along each row. LEED analysis indicates that these breaks occur every 6 to 7 atoms (n = 6 or 7). In the literature, similar gaps in surface reconstructions have been attributed to strain relief [1-4].
4(b). As₄:Ge(311)

Figure 3 is an STM image of As₄:Ge(311). This surface was prepared by annealing a Ge(311) surface in an MOCVD chamber under H₂ and background As₄. It also remains flat, but with a 2x3 reconstruction. The "3" indicates that the row spacing is 19.9 Å. Note that this is different from the row spacing seen for PH₃:Ge(311). The "2" indicates that a subtle two atom periodicity along the rows is observed with LEED.

For the conditions we have studied, PH₃:Ge(mnn) surfaces always remain flat. This suggests an energetic driving force, such as surface tension, which tends to make the surfaces flat.

As₄:Ge(mnn) surfaces also remain flat for the conditions we have studied. Moreover, it is possible to flatten a previously nano-facetted Ge(mnn) surface by heating it under As₄. This indicates that subsurface Ge can rise to the surface and travel great distances before relocating in a more desirable location.

Because AsH₃ etches Ge, the AsH₃:Ge(mnn) surfaces are more complicated. As with the As₄ case, thermal energy still causes subsurface Ge to rise to the surface. However, the etching process removes some fraction of this Ge before it has a chance to relocate. If all of the Ge is removed, and none relocates, the resulting surface can become completely faceted. If most of the Ge relocates (compared to the etching rate), the resulting surface will be flat. The As₄ case represents one extreme in which all of the Ge relocates (none is etched).

This balance between the supply, removal, and relocation of Ge during AsH₃ etching is consistent with our observations, but more work needs to be performed before it is understood in detail. Nonetheless, we are now able to describe the general trends, and have identified three principle nano-facetting directions: (100), (11,3,3) and (955).

5. Discussion

The preceding (311) examples serve as a basis for discussing the entire range of As/Ge and P/Ge (mnn) surfaces. Similar results have been obtained for Ge(211), Ge(311), Ge(411), Ge(511), and vicinal Ge(100) [5, 6] miscut 2, 6 and 9° toward (111).

Acknowledgments

This work would not have been possible without the help of J. Geisz, A. Kibbler, D. Friedman, S. Kurtz, C. Kramer, M. McCarthy and K. Jones. This work is supported by the Office of Energy Research, Basic Energy Sciences, U.S. Department of Energy.

REFERENCES