Replace V-Belts with Cogged or Synchronous Belt Drives

About one-third of the electric motors in the industrial and commercial sectors use belt drives. Belt drives provide flexibility in the positioning of the motor relative to the load. Pulleys (sheaves) of varying diameters allow the speed of the driven equipment to be increased or decreased. A properly designed belt transmission system provides high efficiency, low noise, does not require lubrication, and presents low maintenance requirements. However, certain types of belts are more efficient than others, offering potential energy cost savings.

The majority of belt drives use V-belts. V-belts use a trapezoidal cross section to create a wedging action on the pulleys to increase friction and the belt’s power transfer capability. Joined or multiple belts are specified for heavy loads. V-belt drives can have a peak efficiency of 95% to 98% at the time of installation. Efficiency is also dependent on pulley size, driven torque, under or over-belting, and V-belt design and construction. Efficiency deteriorates by as much as 5% (to a nominal efficiency of 93%) over time if slippage occurs because the belt is not periodically re-tensioned.

Cogged belts have slots that run perpendicular to the belt’s length. The slots reduce the belt’s bending resistance. Cogged belts can be used with the same pulleys as equivalently rated V-belts. They run cooler, last longer, and have an efficiency that is about 2% higher than that of standard V-belts.

Synchronous belts (also called timing, positive-drive, or high-torque drive belts) are toothed and require the installation of mating toothed-drive sprockets. Synchronous belts offer an efficiency of about 98% and maintain that efficiency over a wide load range. In contrast, V-belts have a sharp reduction in efficiency at high torque due to increasing slippage. Synchronous belts require less maintenance and retensioning, operate in wet and oily environments, and run slip-free. But, synchronous belts are noisy, unsuitable for shock loads, and transfer vibrations.

Example
A continuously operating, 100-hp, supply-air fan motor (93% efficient) operates at an average load of 75% while consuming 527,000 kWh annually. What are the annual energy and dollar savings if a 93% efficient (E1) V-belt is replaced with a 98% efficient (E2) synchronous belt? Electricity is priced at $0.05/kWh.

\[
\text{Energy Savings} = \text{Annual Energy Use} \times \left(1 - \frac{E_1}{E_2}\right) \\
= 527,000 \text{ kWh/year} \times \left(1 - \frac{93}{98}\right) = 26,888 \text{ kWh/year}
\]

\[
\text{Annual Dollar Savings} = 26,888 \text{ kWh} \times \$0.05/\text{kWh} = \$1,345
\]
About DOE’s Office of Industrial Technologies

The Office of Industrial Technologies (OIT), through partnerships with industry, government, and non-governmental organizations, develops and delivers advanced energy efficiency, renewable energy, and pollution prevention technologies for industrial applications. OIT is part of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy.

OIT encourages industry-wide efforts to boost resource productivity through a strategy called Industries of the Future (IOF). IOF focuses on the following nine energy and resource intensive industries:

- Agriculture
- Chemicals
- Glass
- Mining
- Steel
- Aluminum
- Forest Products
- Metal Casting
- Petroleum

To help industries begin to save energy, reduce costs, and cut pollution right away, OIT offers a comprehensive portfolio of emerging technology, practices, tools, information, and resources in a variety of application areas, such as motor systems, steam systems, compressed air systems, and combined heat and power systems. Likewise, OIT’s Industrial Assessment Centers (IAC), located throughout the U.S., offer energy, waste, and productivity assessments to small and medium-sized manufacturers. Users can take advantage of the abundant resources, such as software, fact sheets, training materials, etc., available from OIT.

Motor Systems — helps industry increase productivity and reliability through energy-efficient electric motor-driven systems.

Documents -
- Buying an Energy-Efficient Electric Motor
- Optimizing Your Motor-Driven System
- Energy Management for Motor Driven Systems
- Improving Pumping System Performance: A Sourcebook for Industry

Software –
- MotorMaster+ 3.0 and training CD
- ASDMaster
- Pumping System Assessment Tool

Training –
- MotorMaster+ 3.0 Software
- Adjustable Speed Drive Application
- Pumping System Optimization
- Pumping System Assessment Tool

Steam Systems — helps industry enhance productivity, increase profits, and reduce emissions through better steam system management.

Documents –
- Energy Efficiency Handbook
- Plant Services Article - The Steam Challenge
- Energy Manager Article - Steaming Ahead
- Oak Ridge National Laboratory’s Insulation Guidelines
- 1998 IETC Steam Session Papers

Software –
- 3EPlus Software for Determining Optimal Insulation Thickness

Case Studies –
- Georgia Pacific Achieves 6-Month Payback
- Bethlehem Steel Showcase Demonstration

Access the Web site at www.oit.doe.gov/steam.

Compressed Air Systems — dedicated to improving the efficiency and performance of industrial compressed air systems.

Documents –
- Improving Compressed Air System Performance: A Sourcebook for Industry

Training –
- Fundamentals of Compressed Air Systems
 (For schedule and location, call (800) 862-2086)

Industrial Assessment Centers — enable small and medium-sized manufacturers to have comprehensive industrial assessments performed at no cost to the manufacturer.

Documents –
- IAC Database

Access the Web site at www.oit.doe.gov/iac.

For more information, simply check the box next to the product, fill out the form below and fax back to (360) 586-8303:

Name: ___________________________ Title: ___________________________
Organization: ___
Address: __
City: ___________________________ State: ___________________________ Zip: ___________________________
Phone: ________________________ Fax: ________________________ E-mail: ___________________________
Comments: ___

For more information on Motor, Steam, Compressed Air Systems, and IACs, call the OIT Clearinghouse at (800) 862-2086, or access the Web site at www.oit.doe.gov.

Motor Tip Sheet #3 • January 2000 • DOE/GO-102000-0972