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ABSTRACT 

A framework for assessing the performance of short-term solar forecasting is 
presented in conjunction with a range of numerical results using global horizontal 
irradiation (GHI) from the open-source SURFRAD data network. A suite of 
popular machine learning algorithms is compared according to a set of 
statistically distinct metrics and benchmarked against the persistence-of-
cloudiness forecast and a cloud motion forecast. Results show significant 
improvement over the benchmarks with tradeoffs among the machine learning 
algorithms dependending on the desired error metric. Training inputs include time 
series observations of GHI for a history of years, historical weather and 
atmospheric measurements, and corresponding date and timestamps, such that 
training sensitivities may be inferred. Prediction outputs are GHI forecasts for 
one, two, three, and four hours ahead of the issue time, and are made for every 
month of the year for seven locations. Photovoltaic (PV) power and energy 
outputs can then be made using the solar forecasts to better understand power 
system impacts. 

2 



	

	

 
 

 
 

 
   

 
 

 

 

 
 

 
  

 

  

  

 
 

 
 

 
  

 
  

 
  

I. INTRODUCTION 

The integration of high levels of solar power into the grid poses a significant challenge to 
grid operators due to the uncertainty and variability of solar genereration. Improving solar 
irradiance forecasting will ease the ramping demands of back up generators for the grid. One of 
the goals of the Power Systems Design & Studies (PSDS) group within the Energy Systems 
Integration Facility (ESIF) at the National Renewable Energy Laboratory (NREL) is to research 
various methods to improve solar forecasting. Machine learning is one of the newest approaches 
to this challenge and shows promise to make large improvements to short-term solar forecasting. 

Accurate forecasting of solar energy production for unit commitment can reduce solar 
generation uncertainty, which translates to significant savings. A study by Lew et al. finds that $5 
billion savings could be achieved on the Western Electricity Coordinating Council (WECC) per 
year by integrating solar and wind forecasts into unit commitments.1 Inman et al. provides a 
comprehensive review of state of the art methods in solar forecasting, which primarily focuses on 
averaged rather than instantaneous forecasts.2 Lorenz et al. show that for short-term forecasts, 
accuracy is greatly improved by applying model output statistics (MOS) to Numerical Weather 
Prediction (NWP) methods.3 A variety of regression approaches have been applied to improve 
short-term solar forecasting.4-8 For 15-minute to four-hour ahead forecasts, hybrid machine 
learning approaches have achieved significant improvements over the traditional NWP models.9 

A study by Perez et al. finds that the use of inputs such as satellite data improves the accuracy of 
short-term forecasts at several surface radiation (SURFRAD) sites.10 Other studies such as 
Gordon et al. incorporate other exogenous observations such as relative humidity and cloud cover, 
which are utilized by the forecasting methodologies to improve forecasting accuracy.11 

The method developed in this paper utilizes irradiance and exogenous weather time series 
data from seven publicly available weather stations in the surface radiation (SURFRAD) network, 
and uses different machine learning (ML) algorithms to predict solar irradiance forecasts one, 
two, three, and four hours ahead. This paper begins by describing the available data and the 
preprocessing techniques that were applied in this study. A brief overview of the ML forecasting 
methods is then given, followed by results and discussion comparing the performance of the ML 
models against the benchmarks and against each other. Finally, concluding remarks and 
suggestions for future research will be presented. The work presented in this paper was completed 
at the Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL). 

II. PROCESS 

A. Preprocessing input data 

The methodologies developed in this paper were trained and tested on data from the 
SURFRAD observation sites in Desert Rock, NV; Fort Peck, MT; Boulder, CO; Sioux Falls, SD; 
Bondville, IL; Goodwin Creek, MS; and Penn State, PA.  Each site has 11 years of weather 
measurements, at one-minute resolution from 2009 to 2014, and at three-minute resolution from 
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2004 to 2008. This array of sites offers climatically different weather situations. Global horizontal 
irradiance (GHI) at the SURFRAD sites is best represented by the global downwelling solar 

!measurements. The clear sky GHI at time t is denoted by ���!"#$% and represents the theoretical 
GHI at time t assuming zero cloud coverage, and is computed using the Bird model.12 Clear sky 
index is a metric of cloud cover that has been used extensively in forecasting literature.13-15 The 
clear sky index at time t denoted by ��!

(!) is the ratio between the instantaneous observed ���! 
!and the theoretical maximum ���!"#$%. Current time, temperature, relative humidity, wind speed, 

!wind direction, pressure, thermal infrared, ���! , ���!"#$%, and ��!
(!), are used as independent 

variables for the input training vectors. 
Rather than training on the observed instantaneous GHI values at the one, two, three, or 

four-hour ahead forecast horizons (f.h.), which may not be representative of the most probable
���!.! ., the ML models are trained on the average clear sky index for the hour ending at the f.h.. 
The averaged hourly clear sky index ending at time f.h. is denoted by ��!

(!.!.), as in 
!.! ! 
!!!.!.!!" !!! Equation 1

!" 

��!
(!.!.) is used as the dependent variable when training each model, and the models are then used 

to predict ��!
(!.!.) when given unseen test vectors. The forecasted ��!

(!.!.) value is then multiplied
!.!.by ���!"#$% from the Bird model to predict ���!.!., as in 

!.!. (!.!) !.!.���!"#$%&'%() = ��! ∙ ���!"#$% Equation 2 

!.!.This ML forecast is finally compared to the testing input’s corresponding ���!"#$%&$' from the 
SURFRAD data to assess forecasting accuracy. 

Data was partitioned by month and any entries with missing or misreported data were 
removed. All nighttime entries with current or future GHI readings below 20 W/m2, were 
removed to improve the performance of the ML algorithms. Each ML algorithm has many hyper-
parameters that can be tuned and these internal parameters were set using a grid search method. 
Predictions were made for each forecasting situation at a frequency equal to the forecast horizon 
time span.  For example, when forecasting GHI for three hours ahead, the ML models made 
predictions at three-hour intervals every day of the month for all daylight hours. 
B. Description of forecasting methods 

1. Persistence of cloudiness 

Persistence forecasts use the current cloud cover to predict the future GHI. The forecast 
!.!.horizon’s clear sky index is set to the current clear sky index at t and multiplied by GHI!"#$%. This 

simple model is most effective for very short-term forecasts (e.g. minute ahead range), but can 
also be used to make one to four-hour ahead forecasts.  Persistence forecasts were provided as a 
benchmark for the forecasts performed by ML methods in this study. 
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2. Support vector machines 

Support Vector Machines (SVMs) have been used in many solar forecasting applications, 
and have been shown to work well in conjunction with other methods.16-18 SVM regression 
estimates a target function based on the training instances. The output observations are assumed 
to take the form of yi = (wi • xi) + b, where yi is the output observation for training instance i, xi is 
the input training vector for instance i, wi is a weight vector which defines the functional form, 
and b is the bias constant. SVMs operate by transforming a non-linearly separable feature space 
into a multi-dimensional space where variables can be seperated by a 3-D hyperplane. SVMs 
map the original data into this higher dimensional space using a technique known as the kernel 
trick, which allows for different perspectives on the data and makes linear relations more 
apparent. The final objective is to minimize the deviation errors between the output observation 
yi, and the linear functional form = (wi • xi) + b, while maximizing the margin of space on either 
side of the hyperplane. 

3. Artificial neural networks 

Artificial Neural Networks (ANNs) are one of the most popular machine learning 
methods used in solar forecasting.19-21 ANNs operate as computational models of the neural 
networks found in the human brain. They contain layers of nodes with connections between 
nodes in adjacent layers. The input layer consists of one node for each input signal such as 
current time, temperature, GHI, etc. The output layer has a single output node for the 
corresponding GHIf.h.. Between the input and output layers are one or more hidden layers, which 
contain a pre-determined number of nodes. Each node receives a weighted sum of input from the 
signals in the previous layer, and applies an activation function to the weighted sum. The weight 
of each connection is akin to the strength of neural connections in the brain. The output from the 
network is compared to the known training output value, and back propogation is performed to 
adjust the weights between the network’s nodes. This process is repeated until proper weights 
have been determined for the training data and the network can then be used to test unseen data. 

4. Random forests 

A Random Forest (RF) machine learning algorithm, is a forest made of an ensemble of 
decision trees. RFs have been used in solar forecasting in several studies.22-24 Each decision tree 
directs input through several classification and regression decision nodes. Each node splits into 
two possible branches, or outcomes, with each branch leading to another node. The process 
repeats until a terminal node is reached and an output value is connected to the given inputs. 
Performance of a single decision tree can be improved by training multiple regression trees with 
different structures and then averaging their predictions. RFs add random feature selection at 
each node for greater diversity in the decision tree models. Individual decision trees may have a 
bias due to their specific feature selection and structure but a RF averages over all the decision 
trees, significantly minimizing the error bias for the final prediction. 
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5. Gradient boosting 

Gradient Boosting (GB) is a less common ML approach to solar forecasting, and is used 
in this study to extend the RF approach.25 As with RF, GB uses an ensemble of decision trees to 
make a more accurate prediction. In GB, however, trees are added to the ensemble incrementally 
in the training phase to correct for any residuals occuring in existing decision trees. These 
residuals are the negative gradients that quantify the amount of variability between a prediction 
and the expected outcome of the predictive function based on the independent variables of a 
single training instance. Adding trees one at a time allows each new tree to be specifically 
trained to improve an already trained ensemble, as opposed to the RF process of randomly 
adding nodes to new trees to provide for a better average. 

C. Situation dependent, multi-model blending 

One, two, three, and four-hour ahead forecasts were generated for all 12 months at all 
seven SURFRAD sites. The developed code was run 336 times to model each unique forecasting 
situation. Each run trained all four ML algorithms on pre-processed data for the desired month 
from the years 2004-2008 and 2010-2014. After the models were built they were tested on 
unseen data from 2009 and forecasts were made for the desired forecast horizon. 

D. Validation metrics 

A suite of validation metrics is used to compare the forecast accuracy of different 
methodologies and situations in this study. A thorough discussion of different validation metrics 
is covered by Zhang et al. for comparing N observed GHI values � with the N forecast values 
�.26 Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are commonly used 
metrics that measure the difference between the forecasted and actual GHI values. The RMSE 
metric is commonly used to evaluate the overall accuracy of forecasts and penalizes large 
forecasting errors with its square order. The MAE metric is also appropriate for evaluating errors 
through the entire forecasting period, and is widely used in regression problems and by the 
renewable energy industry. It does not penalize large forecast errors as much as the RMSE 
metric. Smaller values of these validation metrics indicate a higher forecasting accuracy. 

III. RESULTS & DISCUSSION 

A. ML forecasts vs. benchmark methods 

To calibrate this study against existing literature, forecasts were made for the same one, 
two, three, and four-hour ahead forecast horizons as Perez et al. study.27 Their study tested the 
period from August 23, 2008 through August 31, 2009. Limitations arose in this study from the 
algorithms’ inabilities to predict on the years before 2009, those years consisting of three-minute 
data resolution, which caused this study to use a slightly different testing period. Instead, this 
study made predictions over the period from January 1, 2009 to December 31, 2009. Seasons 
were partitioned into four three-month periods beginning with January 1st through March 31st. 
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Results are compared to both Perez’s forecasts of a slightly different time period and to the 
persistence of cloudiness forecasts made for the same January 1, 2009 through December 31, 
2009 time period. 

Table 1 in Appendix B shows the RMSE values for ML predictions made in this study, 
Perez’s forecasts, and the persistence of cloudiness forecasts. The values in the yellow columns 
in Table 1 are composed by taking the best performing machine learning algorithm per month 
and compiling these into seasonal and yearly results. The ML models employed in this study 
outperformed the persistence of cloudiness forecasts in every situation with average RMSE 
values of 92.36 W/m2 and 122.12 W/m2, respectively. This study outperformed Perez’s 
forecasting methodology, which was tested on a different period, with average RMSE values of 
92.36 W/m2 and 108.29 W/m2, respectively. 

Comparing the performance of forecasting methods is also discussed using the relative 
frequency (rounded) that a given technique had in producing the lowest error. This study 
outperformed Perez’s method on a seasonal basis for one and four-hour ahead forecasts in 86% 
and 57% of tests, respectively, based on RMSE values.  However, their results outperformed this 
study for two and three-hour ahead forecasts in 57% and 61% of forecasts, respectively. The 
Perez forecasts also outperformed this study in 68% of winter and 57% of spring seasonal 
forecasts, while the ML models outperformed the Perez forecasts in 75% and 79% of all 
situations for the summer and fall seasons, respectively. When broken down by geographic 
location, this study outperformed Perez et al. in Boulder, Fort Peck, Desert Rock, and Bondville 
with respective relative frequencies of 75%, 94%, 63%, and 53% across all tests. Their study 
outperformed this study when forecasting across all situations in Goodwin Creek, Penn State, 
and Sioux Falls 75%, 56%, and 56% of the time. These relative frequencies only take into 
account the number of times that one method outperformed the other and do not consider the 
margin of difference, in W/m2, between competing forecasts.  

Relative frequencies are useful to show which method works best in individual 
forecasting situations but are not ideal for assessing a method’s overall ability to minimize 
forecasting errors across all situations. Figure 1 in Appendix C compares the ML forecasts’ 
RMSE values with the two benchmark forecasts, Perez and persistence, for all SURFRAD sites. 
The graphs show how forecasting errors tend to increase as the forecast horizon extends in time. 
The relative strength of the Perez two and three-hour ahead forecasts over the ML models is 
especially apparent in the graphs for Bondville, Goodwin Creek, and Penn State. Comparisons 
are also made by showing the percentage improvement, defined as the difference between the 
RMSE of the ML forecast and the RMSE of the benchmark forecast divided by the RMSE of the 
benchmark. The greatest improvement across all situations occurs in Fort Peck where the suite of 
ML algorithms demonstrates a 28.8% improvement over the Perez forecasts’ average RMSE 
values, followed by a 25.7% improvement in Boulder. Improvements over Perez forecasts’s 
RMSE averages are made in Desert Rock, Sioux Falls, Penn State, Bondville, and Goodwin 
Creek by 21.5%, 10%, 6.4%, 4.8%, and 0.7%, respectively. It is interesting to note that this study 
shows the largest improvements in RMSE scores for Boulder, Fort Peck, and Desert Rock. These 
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three sites are located at the highest elevations and are the three westernmost locations in the 
SURFRAD network. ML forecasts outperform the RMSE results from the persistence of 
cloudiness forecasts for all sites as well. They show the greatest improvement in the four 
locations situated eastward of mountain ranges or other orographic features: Boulder (25.3%), 
Desert Rock (30.7%), Penn State (26.3%), and Fort Peck (27.2%). 

B. Performance of ML algorithms against each other 

Table 2 in Appendix B compares the four ML models used in this study against each other 
by showing the relative frequency (rounded) of each algorithm’s ability in producing the lowest 
RMSE values in the listed forecasting situations. There were 84 forecasting situations for each of 
the four forecast horizons (12 months per seven sites), 84 situations for the seasonal forecasts 
(three months per seven sites for four forecast horizons), and 48 situations for the geographic 
forecasts (12 months per four forecast horizons) in this study. The ANN algorithm was the top 
performer in each of these situational categories and produced the lowest error value in 41.1% of 
the 336 forecasting situations, based on the RMSE metric. The SVM algorithm performed equally 
well in Fort Peck, and when the seasons are broken down by month, SVM outperformed ANN 
during all April forecasts by 42% to 32%. The RF and SVM algorithms performed almost equally 
well when considering all forecast situations. 

Table 3 in Appendix B is similar to Table 2 except that it shows the relative frequency of 
each model’s ability to produce the lowest MAE values in each forecasting situation. The SVM 
algorithm produced the lowest MAE values in all types of forecasting situations more often than 
any of the other ML models, though it tied ANN when making three-hour ahead forecasts. It was 
the top performer in more situations according to the MAE metric than the ANN was when 
considering the RMSE metric. The SVM performed best most often in one-hour forecasts and 
approached lower relative frequencies as the forecast horizon extended in time. 

IV. CONCLUSIONS & FUTURE WORK 

This paper assessed the performance of machine learning techniques and their validity in 
improving short-term solar forecasting. The machine learning approach was compared to other 
forecasting methods, and individual machine learning algorithms were compared against each 
other. ML forecasts generated lower average RMSE values than a cloud motion forecasting 
method for all seven sites, with the biggest improvements for the three sites at the highest 
elevations and westernmost locations in the SURFRAD network. They also outperformed 
persistence of cloudiness forecasts at all seven sites, with the greatest improvements at the four 
locations situated downwind from large orographic features. The ML forecasts had the lowest 
RMSE more often than the cloud motion method across all summer and fall seasonal forecasts, 
as well as for one and four-hour ahead forecasts.  Assessing the performance of the four 
algorithms against each other did not reveal any strong situation dependent sensitivities, as each 
algorithm was capable of making the best forecast in the various forecasting situations though 
some less than others. However, either SVMs or ANNs most often led to the lowest forecasting 
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errors depending on the error metric used. ANN was the preferred algorithm if minimizing the 
largest point forecast errors is the greatest concern, according to the RMSE metric. However, 
SVM was the best performer if minimizing the average absolute difference, MAE, is top priority. 

This solar irradiance forecasting methodology can be extended by increasing the forecast 
horizon resolutions from hourly increments to five-minute increments, allowing for more 
dynamic time series information about upcoming ramping events. Further work is needed to fine-
tune each ML algorithm, and future research should also look into optimizing ML hyper-
parameters for each situation dependent forecast. Improved forecasts will help facilitate higher 
penetrations of solar energy into the grid by providing increased grid reliability and minimizing 
costs associated with ramping events. 
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VI. APPENDICES 

Appendix A:  Equations 

RMSE is defined as 

! 

! 
(� � − (� � )!!

!!! Equation 3 

MAE is defined as 

! ! � � − �(�) Equation 4!!!! 

for comparing N observed GHI values � with the N forecast values �. 
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Appendix B: Tables 

Table 1: Yearly and Seasonal RMSE Metric Summary 

Forecast 
Horizon 

Boulder Bondville Goodwin 
Creek Fort Peck Desert Rock Penn State Sioux Falls 

ML PC PZ ML PC PZ ML PC PZ ML PC PZ ML PC PZ ML PC PZ ML PC PZ 

A
LL

 Y
EA

R 1 hour 74 104 120 62 83 85 71 96 80 56 79 94 52 76 80 67 96 86 52 74 68 

2 hour 108 142 139 98 118 98 103 130 101 81 110 106 72 103 88 97 132 99 81 106 84 

3 hour 123 161 154 116 135 112 125 146 114 94 126 123 83 116 96 114 151 113 96 126 102 

4 hour 125 169 166 121 143 122 120 152 127 93 130 132 82 122 104 117 157 124 103 136 115 

W
IN

TE
R

 1 hour 55 74 64 51 66 60 58 87 48 36 53 107 45 66 46 53 72 57 41 62 48 

2 hour 81 98 71 82 104 66 98 128 59 52 74 105 63 92 48 79 102 57 65 96 58 

3 hour 96 113 81 104 117 74 122 146 66 62 84 109 75 106 59 91 122 59 82 117 69 

4 hour 87 119 85 105 123 81 111 147 70 58 84 112 84 107 70 96 127 65 89 122 78 

SP
R

IN
G

 1 hour 97 143 125 84 114 93 94 127 92 75 108 110 71 108 86 84 117 83 66 94 69 

2 hour 137 195 141 133 154 109 125 171 122 110 149 124 106 147 95 119 161 99 103 133 90 

3 hour 170 218 157 147 178 123 159 190 144 129 174 141 120 155 111 143 183 118 124 156 107 

4 hour 162 228 170 159 189 137 145 202 164 134 186 148 115 171 115 145 190 137 131 171 126 

SU
M

M
ER

 1 hour 96 136 143 76 97 100 88 119 92 81 101 91 48 71 99 88 125 112 67 90 80 

2 hour 137 185 175 111 134 115 121 151 113 110 143 109 64 85 110 122 170 127 99 129 98 

3 hour 144 211 189 135 153 129 135 168 120 125 164 129 70 105 111 140 194 142 112 155 120 

4 hour 175 222 204 138 169 138 139 175 129 122 173 142 74 118 124 138 208 152 118 168 129 

FA
LL

 

1 hour 46 63 85 35 56 58 44 50 55 34 52 59 43 60 55 45 71 60 35 48 49 

2 hour 78 92 97 67 80 68 67 70 66 52 73 67 57 87 62 69 96 71 57 67 54 

3 hour 81 103 110 76 90 84 83 81 81 59 81 83 65 97 69 80 104 76 65 76 64 

4 hour 75 107 120 81 143 89 87 81 94 58 78 88 56 94 72 89 102 83 74 81 80 

ML (yellow columns): Forecasts made by machine learning methods. 

PC (white columns): Benchmark forecasts made by persistence of cloudiness method. 

PZ (blue columns): Benchmark forecasts made by the Perez et al. cloud motion method. 
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Table 2: Relative Frequencies of ML Models per RMSE Metric 

Forecast Situation RF SVM ANN GBM 

1-hour ahead 8% 31% 42% 19% 

2-hour ahead 22% 20% 38% 20% 

3-hour ahead 25% 13% 45% 16% 

4-hour ahead 29% 20% 38% 13% 

Winter 20% 22% 38% 20% 

Spring 15% 25% 40% 20% 

Summer 24% 17% 47% 12% 

Fall 25% 23% 38% 14% 

Boulder 27% 15% 43% 15% 

Bondville 21% 21% 35% 23% 

Goodwin	 Creek 21% 23% 39% 17% 

Fort Peck 23% 31% 31% 15% 

Desert Rock 15% 31% 42% 12% 

Penn	 State 25% 15% 45% 15% 

Sioux	 Falls 15% 12% 50% 23% 

All Situations 20.8% 21.1% 41.1% 17.0% 

Table 3: Relative Frequencies of ML Models per MAE Metric 

Forecast Situation RF SVM ANN GBM 

1-hour ahead 7% 65% 17% 11% 

2-hour ahead 15% 44% 26% 15% 

3-hour ahead 14% 36% 36% 14% 

4-hour ahead 23% 32% 26% 19% 

Winter 17% 41% 25% 17% 

Spring 6% 60% 19% 15% 

Summer 21% 38% 25% 16% 

Fall 12% 40% 35% 13% 

Boulder 10% 48% 25% 17% 

Bondville 8% 52% 17% 13% 

Goodwin Creek 23% 35% 19% 23% 

Fort Peck 21% 42% 27% 10% 

Desert Rock 21% 48% 19% 12% 

Penn State 8% 42% 40% 10% 

Sioux Falls 10% 44% 27% 19% 

All Situations 14.6% 44.3% 26.2% 14.9% 
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Appendix C: Figures 

Figure 1: ML and benchmark methods’ performances forecasting different forecast horizons. 
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