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Low-energy-intensity electrified membrane separation
splitting biomass into H, and CO,, streams
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Concept schematic: biomass and electricity co-powered
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Photograph of devices reported on herein
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o Glucose electro-oxidation: C4H;,04 + 6H,0 - 24e” = 6CO, + 24H* o MEA electrolyzer
o Glycerol electro-oxidation: C;HgO; + 3H,0 - 14e” = 3CO, + 14H* o Cathodic HER catalyst: Pt/C
o Methanol electro-oxidation: CH;OH + H,0 - 6e” = CO, + 6H* o Anodic catalyst: custom catalyst, capable of

. . converting biomass more completely
o ~20 h electrolysis to completely convert biomass to CO,
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Electrochemical performance in crude glycerol, glucose, electrolysis

Current density vs. cell voltage
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o Glycerol, methanol, and water were mixed to prepare lab-made crude glycerol, which was then dissolved in 0.5
mol L't H,S0,

o Next step: we will study the effect of salt in crude glycerol electrolysis. An example of alkaline crude glycerol
contains sodium salt of fatty acid (0.5%—2% w/w), and sodium chloride (0.5%—2% w/w).[!]

[1] Bioresource Technology 293 (2019) 122155
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Crude glycerol, glucose electrolysis over 10h

Galvanostatic test of crude glycerol over 10h Galvanostatic test of glucose over 10h
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[1] Bioresource Technology 293 (2019) 122155
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Anodic tail gas of crude glycerol, glucose electrolysis

Anodic tail gas analysis (20-hours average)

Crude glycerol Glucose
Co, 96% 93%
0, 1% 2%
N, 2% 2%
Ar 1% 3%

Note: The anolyte was purged with Ar, which came out with CO, in the tail gas. N, comes

from system leakage to air. O, may be partially contributed by OER.
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Membrane lifetime in crude glycerol electrolysis
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o Stable system performances over 2 cycles of electrolysis suggest no obvious evidence of membrane fouling

o Will try more cycles of electrolysis and examine membrane fouling
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Energy cost and carbon intensity
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hydrogen production
o Carbon intensity of wind electricity: 11 CO, kWh!
o Biomass electrolysis requires lower electricity than water electrolysis (1.76 V) o Full-cell voltages: glucose 1.3 V, cellulose & lignin 1.5V,

. . ) . L . crude glycerol 0.7 V
o The energy cost and carbon intensity of H,-CO, separation is eliminated in our 5 Biomass conversion = 98%

system
o High-purity CO, is geologically sequestrated to enable carbon-negative green H, Biomass carbon intensity references:
. Glucose: Journal of Cleaner Production 170 (2018) 610-624
production Cellulose: Materials 2021, 14, 714

Lignin: Science of the Total Environment 770 (2021) 144656
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TEA and carbon intensity — rough estimates

Blue H, Glucose H, Crude glycerol H,
TEA (S/kgH,)
Raw materials 2.06 0 (waste)
Process energy ($0.03/kWh) 0.80 (assume 1.0 V) 0.56 (assume 0.7 V)
CAPEX 0.42 0.42
Plant-gate levelized cost $/kg 1.69-2.55 3.28 0.98
Sottassi sty Sottatss sty
Carbon intensity (kgCO,e/kgH,)
Raw materials preparation 6.0° 5.5¢ 0 (waste)
Process energy 1.6° 0.30¢ 0.21¢
Carbon capture 1.8° 0.0139 (compression) 0.009¢ (compression)
Total carbon footprint 9.4 5.8 0.22
Carbon footprint from air N/A -11.5 -8.1

2 We have reduced this a net revenue by subtracting the cost of compressing the CO,

b https://doi.org/10.1002/ese3.956
¢ Appl. Sci. 2020, 10, 2946
4 Wind electricity 11 gram/kWh

Note: using the same evaluation method, gray hydrogen has a carbon footprint of ~17 kg CO,e/kg H,.
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https://doi.org/10.1002/ese3.956

Challenge #1: cell voltage increases after 10~12 hours
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o Glucose and crude glycerol may be oxidized to some harder-to-oxidize intermedia
chemicals, such as tartaric acid, glyceric acid and glycolic acid.

o Depletion of biomass could be another factor.

[1] Bioresource Technology 293 (2019) 122155
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Challenge #2: Crude glycerol, glucose conversion and crossover

. . ) Proposed system optimization for solving crossover
Biomass conversion & crossover analysis
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Challenge #2: Crude glycerol, glucose conversion and crossover

Photograph of system optimization to address crossover
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10-bar setup

o All parts are resistance to 10 bar and
H,SO,, and capable of holding and
sampling high purity H, and CO,

o To prevent pressure bias, we keep 10
bar at both the cathodic and anodic side
by using back pressure regulators

o The system is purged by Ar to reach 10
bar before electrolysis
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Path forward

Current stage and target

Current stage Target
Time averaged full-cell voltage (V) 1.1 (20h) 1
GJ/ton H, 105 96
Biomass utilization (%) 87 98
Carbon crossover to catholyte (%) 2 1
Carbon footprint (ton CO,/ton H,) -6.3 -7.8
Anodic CO, purity (%) 96 98
CO, and H, pressure (bar) 1 20
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R&D topics

Effect of salt in crude glycerol on
electrochemical performance

Membrane fouling over long-term electrolysis

Effect of N and S impurities on the
electrochemical performance

Mechanism study on biomass electro-
oxidation pathway

Electrochemical performance, local
environment, and reaction pathway change
under 20 bar

Innovative anodic catalyst discovery for
biomass electro-oxidation
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