Carbon negative H₂

Ted Sargent Northwestern University

Low-energy-intensity electrified membrane separation splitting biomass into H₂ and CO₂ streams

-5.8 kgCO₂/kgH₂ Case: carbohydrates +5.5 kgCO₂/kgH₂ -11.5 kgCO₂/kgH₂ **Biomass-derived** Direct air molecules +0.21 kgCO₂/kgH₂ carbon fixation ~100% H₂ ~100% CO₂ +0.013 kgCO₂/kgH₂ Raw biomass Carbon sequestration

Splitting biomass into a pure H₂ stream and a pure CO₂ stream

Concept schematic: biomass and electricity co-powered carbon-negative green H₂ production

Photograph of devices reported on herein

- $_{\circ}$ Glucose electro-oxidation: C₆H₁₂O₆ + 6H₂O 24e⁻ = 6CO₂ + 24H⁺
- $_{\circ}$ Glycerol electro-oxidation: C₃H₈O₃ + 3H₂O 14e⁻ = 3CO₂ + 14H⁺
- Methanol electro-oxidation: $CH_3OH + H_2O 6e^- = CO_2 + 6H^+$
- $_{\circ}$ ~20 h electrolysis to completely convert biomass to CO $_{2}$

MEA electrolyzer

- Cathodic HER catalyst: Pt/C
- Anodic catalyst: custom catalyst, capable of converting biomass more completely

Electrochemical performance in crude glycerol, glucose, electrolysis

Current density vs. cell voltage

- Glycerol, methanol, and water were mixed to prepare lab-made crude glycerol, which was then dissolved in 0.5 mol L⁻¹ H₂SO₄
- Next step: we will study the effect of salt in crude glycerol electrolysis. An example of alkaline crude glycerol contains sodium salt of fatty acid (0.5%–2% w/w), and sodium chloride (0.5%–2% w/w).^[1]

Crude glycerol, glucose electrolysis over 10h

5 5 50 mA cm⁻² 50 mA cm⁻² Full-cell voltage (V) Full-cell voltage (V) Full-cell voltage of water electrolysis = 1.8 V Full-cell voltage of water electrolysis = 1.8 V Thermodynamic voltage, water elysis = 1.23V Thermodynamic voltage = 1.23V 10h-averaged full-cell voltage = 1.3 V 10h-averaged full-cell voltage = 0.7 V 0 0 2 2 8 0 6 8 10 0 6 10 Time (h) Time (h)

Galvanostatic test of crude glycerol over 10h

Galvanostatic test of glucose over 10h

[1] Bioresource Technology 293 (2019) 122155

Anodic tail gas of crude glycerol, glucose electrolysis

Anodic tail gas analysis (20-hours average)

	Crude glycerol	Glucose
CO ₂	96%	93%
0 ₂	1%	2%
N ₂	2%	2%
Ar	1%	3%

Note: The analyte was purged with Ar, which came out with CO_2 in the tail gas. N₂ comes from system leakage to air. O₂ may be partially contributed by OER.

Membrane lifetime in crude glycerol electrolysis

- Stable system performances over 2 cycles of electrolysis suggest no obvious evidence of membrane fouling
- Will try more cycles of electrolysis and examine membrane fouling

Energy cost and carbon intensity

- Biomass electrolysis requires lower electricity than water electrolysis (1.76 V)
- The energy cost and carbon intensity of H₂-CO₂ separation is eliminated in our system
- $_{\circ}$ $\,$ High-purity $\rm CO_2$ is geologically sequestrated to enable carbon-negative green $\rm H_2$ production

- $\circ~$ Carbon intensity of wind electricity: 11 CO $_2$ kWh^-1
- Full-cell voltages: glucose 1.3 V, cellulose & lignin 1.5 V, crude glycerol 0.7 V
- Biomass conversion = 98%

Biomass carbon intensity references: Glucose: Journal of Cleaner Production 170 (2018) 610-624 Cellulose: Materials 2021, 14, 714 Lignin: Science of the Total Environment 770 (2021) 144656

Northwestern

0

TEA and carbon intensity – rough estimates

	Blue H ₂	Glucose H ₂	Crude glycerol H ₂		
TEA (\$/kgH ₂)					
Raw materials		2.06	0 (waste)		
Process energy (\$0.03/kWh)		0.80 (assume 1.0 V)	0.56 (assume 0.7 V)		
САРЕХ		0.42	0.42		
Plant-gate levelized cost \$/kg	1.69-2.55	3.28	0.98		
Other revenue opportunity ^a		<u>Credit \$0.35 if \$50/tonCO₂</u> <u>Credit \$0.91 if \$100/tonCO₂</u>	<u>Credit \$0.25 if \$50/tonCO₂</u> Credit \$0.64 if \$100/tonCO ₂		
Carbon intensity (kgCO ₂ e/kgH ₂)					
Raw materials preparation	6.0 ^b	5.5°	0 (waste)		
Process energy	1.6 ^b	0.30 ^d	0.21 ^d		
Carbon capture	1.8 ^b	0.013 ^d (compression)	0.009 ^d (compression)		
Total carbon footprint	9.4	5.8	0.22		
Carbon footprint from air	N/A	<u>-11.5</u>	<u>-8.1</u>		

 $^{\rm a}$ We have reduced this a net revenue by subtracting the cost of compressing the $\rm CO_2$

^b <u>https://doi.org/10.1002/ese3.956</u>

^c Appl. Sci. 2020, 10, 2946

^d Wind electricity 11 gram/kWh

Note: using the same evaluation method, gray hydrogen has a carbon footprint of ~17 kg CO₂e/kg H₂.

Challenge #1: cell voltage increases after 10~12 hours

- Glucose and crude glycerol may be oxidized to some harder-to-oxidize intermedia chemicals, such as tartaric acid, glyceric acid and glycolic acid.
- Depletion of biomass could be another factor.

Challenge #2: Crude glycerol, glucose conversion and crossover

Proposed system optimization for solving crossover

Challenge #2: Crude glycerol, glucose conversion and crossover

Photograph of system optimization to address crossover

10-bar setup

- All parts are resistance to 10 bar and H₂SO₄, and capable of holding and sampling high purity H₂ and CO₂
- To prevent pressure bias, we keep 10 bar at both the cathodic and anodic side by using back pressure regulators
- The system is purged by Ar to reach 10 bar before electrolysis

Path forward

Current stage and target

	Current stage	Target
Time averaged full-cell voltage (V)	1.1 (20h)	1
GJ / ton H ₂	105	96
Biomass utilization (%)	87	98
Carbon crossover to catholyte (%)	2	1
Carbon footprint (ton CO_2 /ton H_2)	-6.3	-7.8
Anodic CO ₂ purity (%)	96	98
CO ₂ and H ₂ pressure (bar)	1	20

R&D topics

- Effect of salt in crude glycerol on electrochemical performance
- Membrane fouling over long-term electrolysis
- Effect of N and S impurities on the electrochemical performance
- Mechanism study on biomass electrooxidation pathway
- Electrochemical performance, local environment, and reaction pathway change under 20 bar
- Innovative anodic catalyst discovery for biomass electro-oxidation