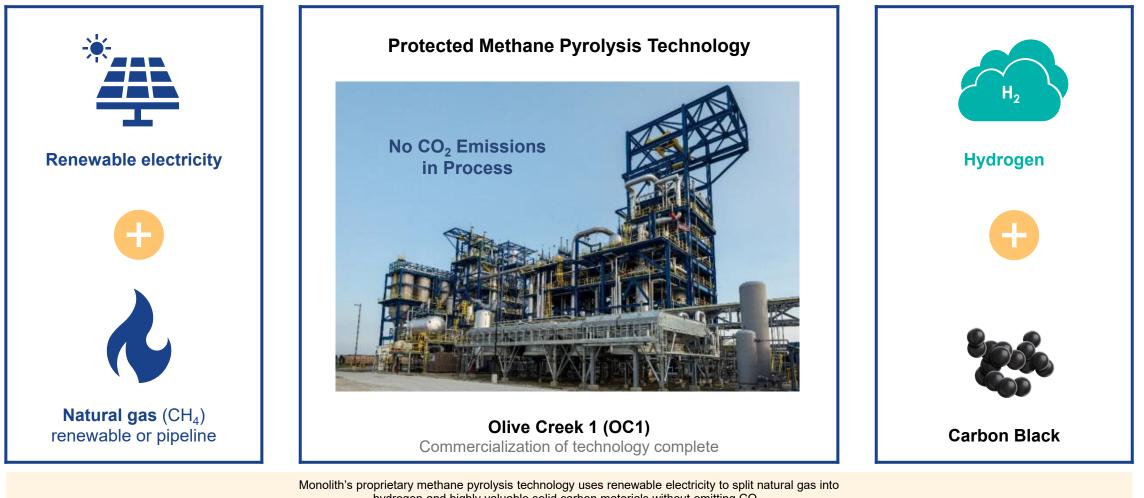
# Monolith Background & H<sub>2</sub> GHG Impact Lightning Talk: Anthony Spizuoco



### **Monolith Presenter**



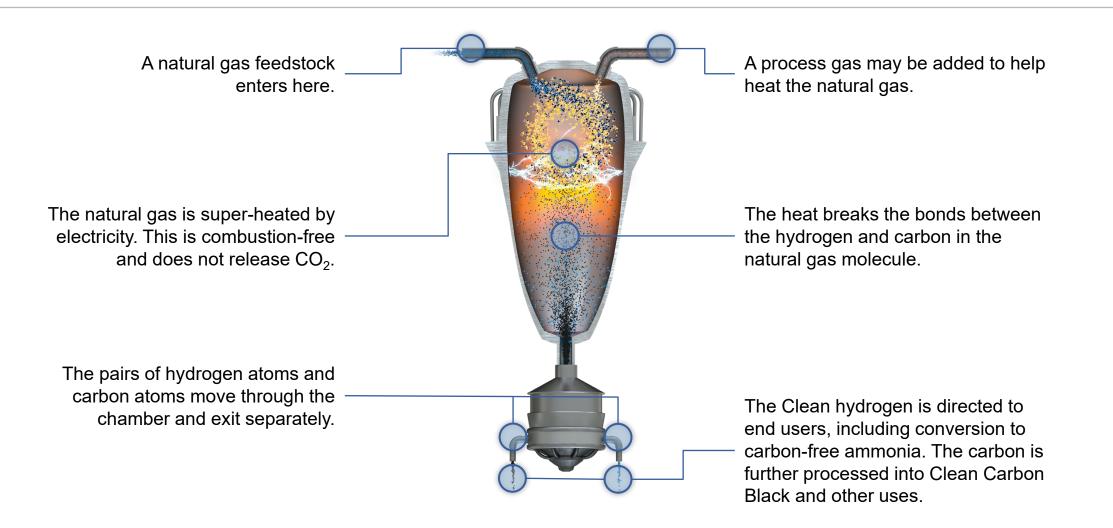
### **Anthony Spizuoco**


Director, Engineering Deployment



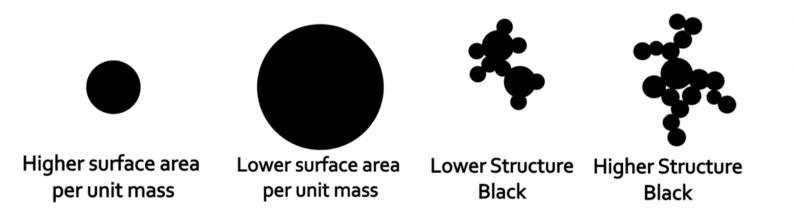
## Technology Background




### **Clean Hydrogen & Carbon Black from Electricity and Natural Gas**



hydrogen and highly valuable solid carbon materials without emitting CO<sub>2</sub>.

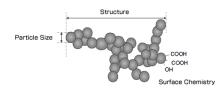



### **Methane Pyrolysis Process**



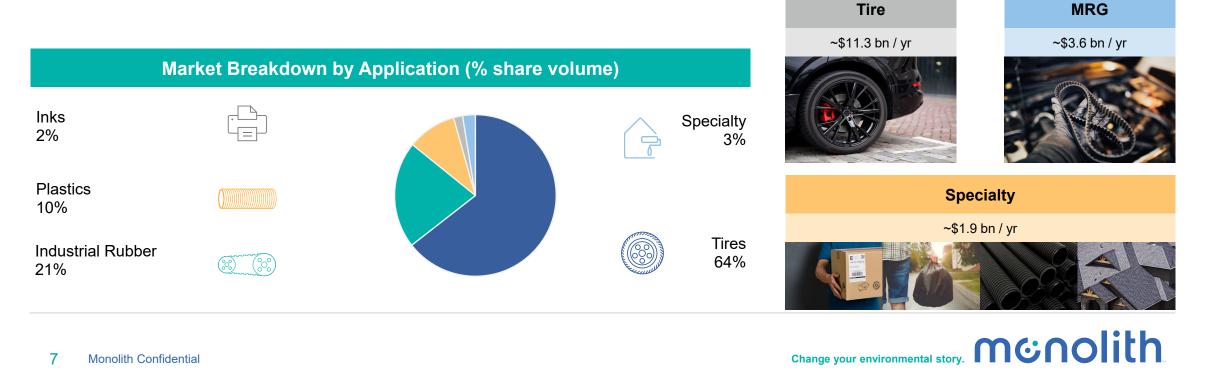
### What is Carbon Black?

- A very fine, very black powder
- Has a molecular and crystalline structure similar to graphite, but with many curved and amorphous regions
- Consists of primary particles (typically 10-50 nm) welded together into aggregates (typically 50-250 nm)






### **Carbon Black Market and Applications**


#### ~\$16 bn global market (growing 2-3% / year) with prevalent and diverse end-uses

- Among the top 50 industrial chemicals worldwide
  - 100-year-old commodity product with ubiquitous and diverse end-uses 0
- Output is 98.0 99.5% solid carbon
- Unique properties ideal for rubber and plastics applications
  - Structure and surface properties help reinforce and color rubbers and plastics 0
  - 1/3 of tire made of carbon black 0





Monolith Carbon Black pellets



Carbon Black

### **Successful Technology Scale-Up**

#### **CLEAN HYDROGEN PRODUCTION**



#### Demonstrated ability to scale-up *patent protected*, *commercially viable* technology

Note: Assumes 0.31kg of hydrogen is produced for every kg of carbon black



### **Monolith Expansion (Olive Creek 2)**

| Olive Creek I (OC1) |                                                              |  |  |  |
|---------------------|--------------------------------------------------------------|--|--|--|
| Production Capacity | <b>Hydrogen:</b> ~5 ktpa<br><b>Valuable Carbon:</b> ~15 ktpa |  |  |  |
| Completion          | June 2020                                                    |  |  |  |
| Location            | Nebraska, United States                                      |  |  |  |
| Technology          | Full, commercial-scale reactor                               |  |  |  |



| Olive Creek II (OC2) |                                                  |  |  |  |
|----------------------|--------------------------------------------------|--|--|--|
| Production Capacity  | Hydrogen: ~60 ktpa<br>Valuable Carbon: ~180 ktpa |  |  |  |
| Completion           | 2027 (target)                                    |  |  |  |
| Location             | Nebraska, United States                          |  |  |  |
| Technology           | Two 6-reactor trains (same scale as OC1)         |  |  |  |





Hydrogen Life Cycle Assessment (LCA)



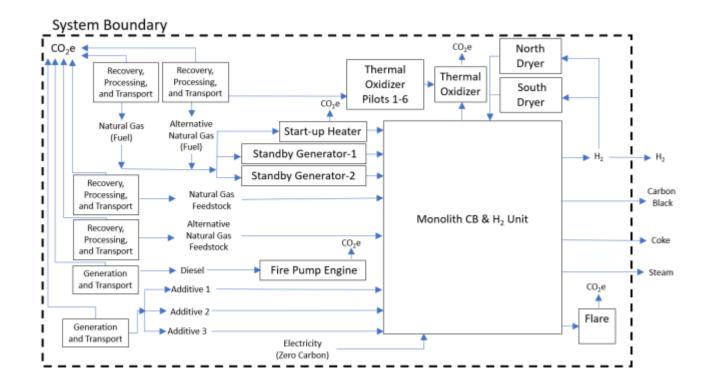
### **Hydrogen Production Technologies**

|                                                                     | Steam Methane R                                                                | Reforming ("SMR")                                                                | Auto-Thermal Reforming ("ATR")                                                          | Electrolysis                                                                                                                             | Pyrolysis                                                                                                                                      |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | Water *                                                                        | T Hydrogen<br>1 T Hydrogen<br>1 T CO <sub>2</sub><br>(emitted)<br>ty Electricity | Natural Gas<br>Natural Gas                                                              | O → IT Hydrogen<br>Water → C<br>Vater → S T Oxygen<br>Facility Electricity                                                               | (Renevable)<br>Natural Gas                                                                                                                     |
|                                                                     | Natural gas is passed throug<br>hydrogen and CO <sub>2</sub> ; high c<br>chear | gh steam to split methane into<br>arbon footprint but relatively<br>o today.     | Natural gas is reacted with oxygen to split methane into hydrogen and CO <sub>2</sub> ; | Electricity is used to split water into hydrogen and oxygen;<br>greatly reduced carbon emissions, assuming a renewable<br>energy source. | Decomposition of natural gas into hydrogen and carbon;<br>generates CO <sub>2</sub> -free hydrogen with solid carbon as the only<br>byproduct. |
| Select Players                                                      | AirLiquide PRO                                                                 | DUCTS 12 Linde                                                                   |                                                                                         |                                                                                                                                          |                                                                                                                                                |
| $H_2$ Carbon Intensity<br>[kg CO <sub>2</sub> / kg H <sub>2</sub> ] | Г ●                                                                            | ο٦                                                                               | Γ • 7                                                                                   | 0                                                                                                                                        | 0                                                                                                                                              |
| Technical readiness level                                           | w/o ccs 11                                                                     | 9-10 With CCS <sup>2</sup>                                                       | W/O CCS 9-10 9-10 With CCS <sup>2</sup>                                                 | 8                                                                                                                                        | 8                                                                                                                                              |
| Capital Intensity                                                   | L O                                                                            | • _                                                                              | L O J                                                                                   | •                                                                                                                                        | ٩                                                                                                                                              |
| Water usage w Steam & Cooling                                       | 5.2 -13 gal / kg H <sub>2</sub>                                                |                                                                                  | 5.2 -13 gal / kg H <sub>2</sub>                                                         | 3- 4.7 gal / kg H <sub>2</sub>                                                                                                           | 2.5 gal / kg H <sub>2</sub>                                                                                                                    |
| Electricity usage                                                   | N/A                                                                            |                                                                                  | N/A                                                                                     | 59 kWh / kg H <sub>2</sub>                                                                                                               | 30 kWh / kg $H_2$                                                                                                                              |
| Natural gas usage                                                   | 125 – 155 MMBTu / T H <sub>2</sub>                                             |                                                                                  | 115 – 145 MMBTu / T H <sub>2</sub>                                                      | 0                                                                                                                                        | 210 MMBTu / T H <sub>2</sub><br>No allocation to Carbon                                                                                        |
| Access to government incentives<br>like 45Q/ 45V                    | No Yes, @ \$3/kg H <sub>2</sub> <sup>3</sup>                                   |                                                                                  | No Yes, @ \$3/kg H <sub>2</sub> <sup>3</sup>                                            | Yes, @ \$3/kg H <sub>2</sub> <sup>3</sup>                                                                                                | Yes, @ \$3/kg H <sub>2</sub> <sup>3</sup>                                                                                                      |

Sources: Wolfe Research, BNEF and company documents; C-Zero, EKONA and HazerGroup are at Technical Readiness Level (TRL) 5 as reported in ChemBioEng Reviews; <sup>1</sup>Based on US hydrogen cost curve <sup>2</sup> Carbon capture and storage (CCS) which comes with geographical restrictions. <sup>3</sup> Likely to need some level of RNG feedstock to get to 0.45.

### LCA System Boundary (OC1 + OC2)

Monolith's LCA assesses the carbon intensity of its future products and process on a "Cradle-to-Gate" basis modeled with GREET1 2022

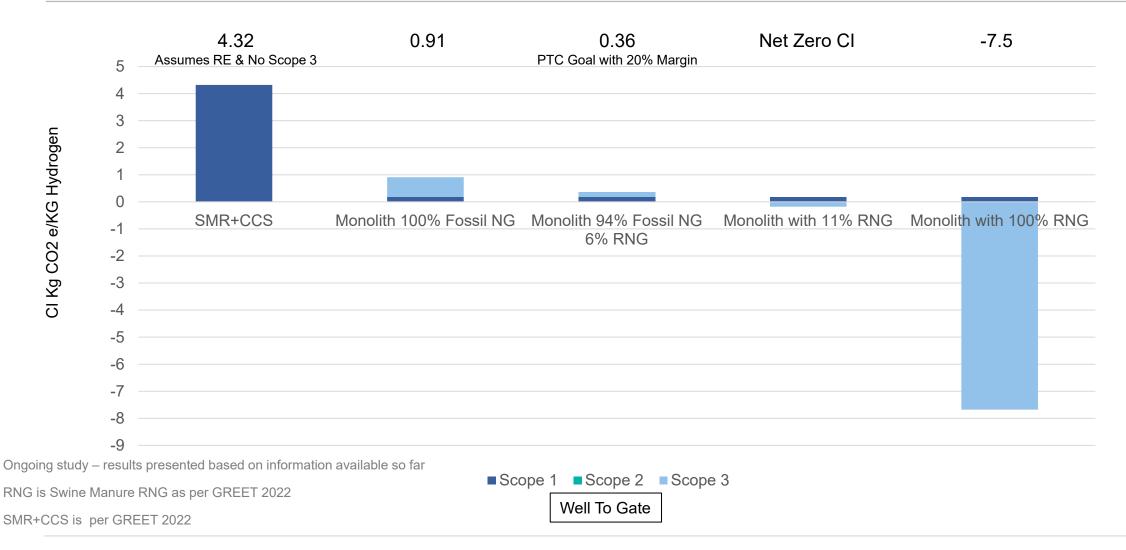

#### In Scope:

- Recovery, processing and transmission of natural gas (and alternatives) to the OC1+2 facility
- Production and transportation of process additives
- The production process

#### Out of Scope:

- Shipping
- End use
- Ultimate disposal after use stages

These steps are assumed to be like conventionally produced products in the market




"Cradle-to-Gate" means ...

- Scope 1 Direct Emissions (our production process)
- Scope 2 Indirect Emissions (purchased electricity)
- Scope 3 Upstream Emissions (production & transportation of procured raw materials)
- ...for the manufacture of our products. Our accounting ends when our product is produced.



### **Comparison of SMR + CCS Hydrogen & Monolith GHG Footprint**





### **Monolith in the News**



Monolith Receives Conditional Approval for a One Billion-Dollar U.S. Department of Energy Loan

Monolith / December 22, 2021



Monolith's plant in Nebraska runs on renewable power to tum natural gas into clean hydrogen and earbon materials



#### In Industry First, Goodyear Launches Tire with Monolith's Carbon Black

May 10, 2023

The hydrogen to power a green world.