Insights from DOE Roads to Removal Analysis:

Impacts of carbon-negative hydrogen from biomass

June 21, 2023 Carbon Negative Hydrogen Workshop

Sarah Baker, Wenqin Li (LLNL), Joe Sagues (NC State), Mathhew Langholtz, Chad Hellwinckel, Ingrid Busch (ORNL), Mark Wright, (IA State), Jerome DuMortier (University of Indiana), Alvina Aui (LLNL), Phil Robertson (Michigan State), Sinead Crotty (Yale)

Lawrence Livermore National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Source: Jérôme Hilaire Mercator Institute

Carbon Removal Assessments

How much CO₂ removal and storage can we accomplish in the USA? What will it cost?

INITIAL CONSIDERATIONS FOR LARGE-SCALE CARBON REMOVAL IN THE UNITED STATES

>1 Gt/yr by 2050?

Roads to Removal Project Team

Biomass Carbon Removal and Storage (BiCRS)

BiCRS Biomass Supply, Conversion, and Impacts

We did not analyze

Gaps to implementation

Avoided or reduced emissions

Policy

Infrastructure needed to support co-products (including H₂ infrastructure)

Biomass Carbon Removal and Storage (BiCRS) Feedstocks

Biomass Assessment Approach (2050)	Annual Bone Dry Tonnes @ \$100/tonne	Commodity Price Change
<mark>Baseline</mark>	494 million tonnes	0
Zero Cropland Change	637 million tonnes	0
Maximum Potential	967 million tonnes	10-20%

Biomass Assessment Approach (2050)	Annual Bone Dry Tonnes @ \$100/tonne	Commodity Price Change
Baseline	494 million tonnes	0
Zero Cropland Change	637 million tonnes	0
Maximum Potential	967 million tonnes	10-20%

Conservation Reserve Program Lands

Biomass Assessment Approach (2050)	Annual Bone Dry Tonnes @ \$100/tonne	Commodity Price Change
Baseline	494 million tonnes	0
Zero Cropland Change	637 million tonnes	0
Maximum Potential	967 million tonnes	10-20%

Lands Spared Due to Electrification

Biomass Assessment Approach (2050)	Annual Bone Dry Tonnes @ \$100/tonne	Commodity Price Change
Baseline	494 million tonnes	0
Zero Cropland Change	637 million tonnes	0
Maximum Potential	967 million tonnes	10-20%

Rain Fed Marginal and Abandoned Lands

Biomass Assessment Approach (2050)	Annual Bone Dry Tonnes @ \$100/tonne	Commodity Price Change
Baseline	494 million tonnes	0
Zero Cropland Change	637 million tonnes	0
<mark>Maximum Potential</mark>	967 million tonnes	<mark>10-40%</mark>

Market Response on Agricultural Lands

Biomass in Each U.S. CO₂ Removal Region-

Zero Cropland Change

We Analyzed 27 Unique BiCRS Pathways

US Geologic Storage:

Extensive, but not co-located with all biomass

Minimal CO₂ Trunk Line

Implementation of BiCRS: Biocarbon Infrastructure, Logistics, and Transportation

Ingrid Busch

Optmization Results: 25% Removal capacity

Optmization Results: 90% Removal capacity

Optimized Carbon Removal Results:

cost curve dominated by H2 at <\$100/ton

arbon Removal Cost (\$/tonne CO2 avoided)

Zero Cropland Change 2050 (90% Removal) 200 BiCRS 2050 FP asphalt char CO2 polyethylene BiCRS 2050 gasification H2 BiCRS 2050 RNG biogas landfill BiCRS 2050 FP asphalt char 150ŀ BiCRS 2050 Polyethylene and ADA BiCRS 2050 pyrolysis H2 BiCRS 2050 sawmill BiCRS 2050 Electricity 100 BiCRS 2050 Polyethylene no copro Gasification hydrogen 50 4 × 10⁸ 2×10^{8} 6×10^{8} 8×10^{8} Carbon Removal (tonnes CO2/year)

Optimized Carbon Removal Results:

cost curve dominated by H2 at <\$100/ton

Cost Breakdown by Region- Dominated by Capital, Feedstock, and Production costs

H₂ Prices are Variable... Sensitivity of CO₂ removal cost to H₂ selling price

Impact of Optimized BiCRS Pathway on Meeting Projected H₂ Market Demand

Biomass Assessment Approach (2050)	Feedstock Used million tonnes/year	CO2e removal potential Million tonnes/year	CO2 removal cost \$/tonne CO2	H2 Production Million tonnes/year	Projected H2 Market Million tonnes/year
Zero Cropland Change	532 million tonnes	831	73	34	50
Maximum Potential	752 million tonnes	1163	75	49.5	50

Carbon Intensity of Hydrogen: +7 to - 24 kg $CO_2/kg H_2$

BiCRS Hydrogen – Opportunity to reduce PM 2.5

Pouliot et al., 2017 https://doi.org/10.1080/10962247.2016.1268982

BiCRS Carbon Negative Hydrogen

BiCRS H₂ Highest Impact Pathway toward Maximized CO₂ Removal

U.S. has sufficient biomass resources to provide biomass to BiCRS with zero cropland impacts @ 1 Gigatonne scale CO₂ removal; requires hundreds of biorefineries

Most significant cost drivers are feedstock, capex and opex, not CO₂/Biomass transportation, nor geologic storage.

We provide an optimized solution for one objective- there are many demands on biomass in a decarbonized future...innovation is needed to provide the fuel, products, and CO₂ emissions reduction and removal we will need

Keep a Big Tent

We will need every solution we can find

Zero Cropland Change 2050 (25% Removal)

Exclusions	Requirements
Population density of more than 500	Water supply of 12.5k gallons/minute within
people within 1 square mile	20 miles ⁺⁺
Wetlands or open water	Within 200 miles of rail transfer station for
	biomass and CO ₂
Protected lands	Within 200 miles of pipeline transfer station
	for biomass and CO ₂ ***
Slope greater than 12%	
Landslide hazard	
100-year floodplain	

Term	Assumptions		
Capital Recovery Factor (CRF)	11.75%		
Interest rate	10%		
Project life	20 years		
Indirect Capital Cost	0.424 * Direct Capital Cost		
Capital Scaling Factor	0.7		
Fixed Operating Cost	4.5% of total capital cost		
Plant Utilization	90%		
Cost Year	2022		

Maximum 5 ktpd facilities, would not allow facilities closer than 50 miles apart

Product	Units	2025	2050
Electricity	Billion kWh	10,850	11,950
RNG	Billion MJ	34,251	38,220
Gasoline	Billion gallons	134	134
Diesel	Billion gallons	60.7	56.7
Jet fuel	Billion gallons	26.4	34.7
Ethanol	Billion gallons	14.9	16.9
Hydrogen	million tons	12.3	50.0
Bioasphalt			
binder	Million tons	3.15	7.28
Bio-			
polyethylene	Million tons	29.1	57.8
Adipic acid	Million tons	3.15	9.92
Acetone	Million tons	2.00	2.51
Nylon	Million tons	0.71	1.41
Lumber	m ³	45,827,900	51,912,700

Product prices		
Ethanol	1.624401	\$/gal
Biochar	95.43	\$/MT
Hydrogen	2.385	\$/kg
MEK-2-Butanone	1750.8	\$/MT
Lumber/wood products	147	\$/m3
Wax co product	0.5	\$/GGE
Acetone	1167.502	\$/MT
Electricity	0.08	\$/kWh
Polyethylene	1208.92969	\$/MT
Liquid fuels / Gasoline	2.30263635	\$/gal
Diesel	2.44308045	\$/gal
RNG	3.98	\$/MMBTU
Jet fuel	2.27845381	\$/gal
Bioasphalt	152.241986	\$/MT
Adipic Acid	1.72	\$/kg
sodium syulfate	0.15	\$/kg

		Gasification to H2	Pyrolysis to H2	CAPEX plant level: gasification to H2	CAPEX plant level:pyrolysis to H2
	t/d	# facilities	# facilities	MM\$/plant	MM\$/plant
25%	1000			456	242
	2000			741	393
	3000			984	522
	4000			1203	639
	5000	77	6	1407	745
90 %	1000	2	. 1	456	242
	2000	1	1	741	393
	3000			984	522
	4000	1		1203	639
	5000	260	11	1407	745

Running Sum of Quantity vs. sum of Price Value. Color shows details about Feedstocks. Size shows sum of Quantity. Details are shown for Price and Feedstocks. The data is filtered on Quantity, which ranges from 1 to 116874972.54.

2050 Minimum Cropland Change Biomass Stepwise Curve (up to \$100/Metric Ton) for All Feedstocks

Running Sum of Quantity vs. sum of Price Value. Color shows details about Feedstocks. Size shows sum of Quantity. Details are shown for Price and Feedstocks. The data is filtered on Quantity, which ranges from 1 to 133754698.04.

Running Sum of Quantity vs. sum of Price Value. Color shows details about Feedstocks. Size shows sum of Quantity. Details are shown for Feedstocks and Price. The data is filtered on Quantity, which ranges from 1 to 181292245.71.

Soil and Agricultural Systems

Assess carbon storage via conservation agriculture (cover cropping) and perennial bioenergy systems

Measure biophysical outputs (using COMET biogeochemical model):

- 1. Net increase in soil carbon
- 2. Avoided emissions (e.g., lower N_2O)
- 3. Yield & biomass supply

Modelled CO_2 removal & emissions reductions for $\operatorname{\mathbf{cover\ cropping}}$

Geologic Storage

Identify geologic storage options and costs

Assess storage capacity in saline aquifers – and degree of confidence

Assignment for ~30 basins.

Trunk CO₂ pipelines would reduce system cost and use the highest-quality storage sites

Cross-Cutting Analyses: prioritizing land/resource use & environmental justice

Heat sources for DAC Water constraints Land use Transport options and costs Effects on pollution, jobs, & land ownership

System analysis highlights who wins & who loses