

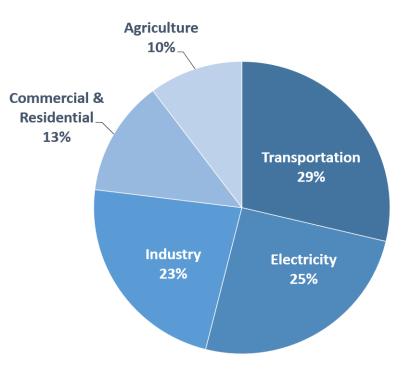
Fossil Energy and Carbon Management

OVERVIEW OF FECM HYDROGEN PROGRAM R&D

Dr. Jai-woh Kim

Senior Program Manager, Hydrogen with Carbon Management Fossil Energy and Carbon Management Office at US DOE June 22-23, 2023

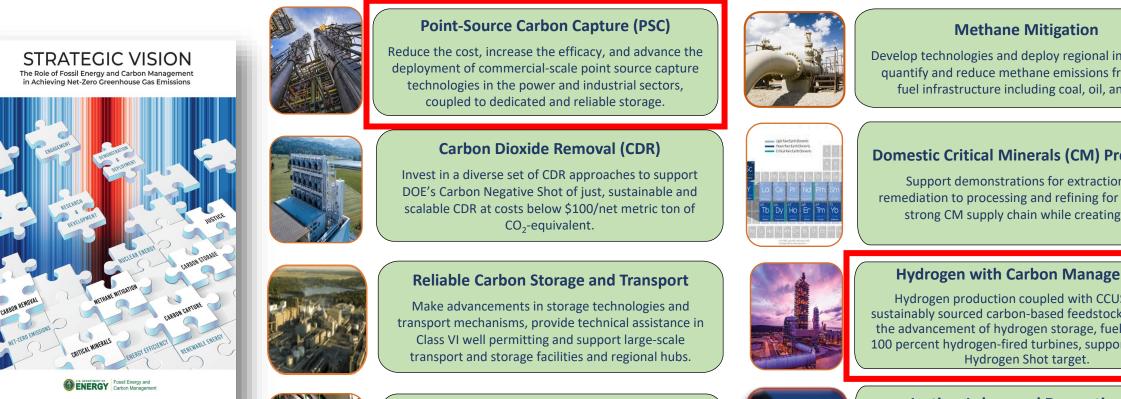
Fossil Energy and Carbon Management (FECM)


Office of Fossil Energy and Carbon Management

DOE-FE is now DOE-FECM

New name for our office reflects our **new vision**

- President Biden's goals:
 - 50% emissions reduction by 2030
 - CO₂ emissions-free power sector by 2035
 - Net zero emissions economy by no later than 2050



U.S. Environmental Protection Agency (2021). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019

FECM Priorities with New Strategic Vision

. DEPARTMENT OF

Carbon Dioxide Conversion

Accelerate capabilities for large-scale conversion of CO₂ into products that advance net-zero goals, facilitated by markets that use CO₂ as a feedstock.

Develop technologies and deploy regional initiatives to guantify and reduce methane emissions from fossil fuel infrastructure including coal, oil, and gas.

Domestic Critical Minerals (CM) Production

Support demonstrations for extraction and remediation to processing and refining for building a strong CM supply chain while creating jobs.

Hydrogen with Carbon Management

Hydrogen production coupled with CCUS using sustainably sourced carbon-based feedstocks. Invest in the advancement of hydrogen storage, fuel cells, and 100 percent hydrogen-fired turbines, supporting DOE's

Justice, Labor, and Domestic and **International Collaboration**

Collaborate with domestic and international partners to create a sustainable energy infrastructure with equity and justice at the core of FECM's work.

Fossil Energy and **Carbon Management**

fecm.energy.gov

FECM Hydrogen Program R&D

- Clean hydrogen production using gasification, natural gas reforming, methane pyrolysis and solid oxide electrolysis cell technologies (SOEC/RSOFC)
- Hydrogen end use in electricity and other energy sectors
 - $_{\odot}$ Solid Oxide Fuel Cells
 - \circ Hydrogen Turbines
- Safe and reliable hydrogen production, transport, storage and utilization
- FECM also collaborates with EERE's Hydrogen and Fuel Cell Technologies Office and Bioenergy Technology Office.

Hydrogen with Carbon Management

 Program elements include Advanced Gasification, Advanced Turbines, and Reversible Solid Oxide Fuel Cells, Sensors and Controls, Computational Science

Methane Mitigation Technologies

 Focus areas for the program include advancing technologies for the carbonneutral production, transport, and storage of hydrogen sourced from natural gas

DOE Efforts on Hydrogen Programs

EERE HYDROGEN

Feedstocks:

• Renewables and Water

Technologies:

- Electrolysis Low- and High-Temperature
- Advanced Water Splitting Solar/High-Temp Thermochemical, Photoelectrochemical
- Biological Approaches

FECM HYDROGEN

Feedstocks:

• Fossil Fuels, Solid Wastes and Water

Technologies:

- Gasification, Reforming, Methane Pyrolysis
- Electrolysis High temperatures (RSOFC)
- Natural Gas to Solid Carbon plus Hydrogen

NE HYDROGEN

Feedstocks:

• Nuclear Fuels and Water

Technologies:

- Electrolysis Systems for Nuclear
- Advanced Nuclear Reactors
- Systems Integration and Controls LWRs and Advanced Reactors

Areas of Collaboration

Reversible Fuel Cells, Biomass, Municipal Solid Waste, Plastics, Polygeneration including Co-Gasification with Biomass, High-Temperature Electrolysis, Systems Integration

Cross-Cutting R&D Offices: Office of Science (SC) and ARPA-E

Foundational research and innovation; user facilities and tools, materials and chemical processes (e.g., catalysis, separations), artificial intelligence/machine learning, databases and validation, high risk-high impact R&D, and other crosscutting activities

Hydrogen Provisions in Recent Legislation

Bipartisan Infrastructure Law

- **Covers \$9.5B** for clean hydrogen:
 - \$8B for at least four regional clean hydrogen hubs
 - \$1B for electrolysis research, development and demonstration
 - \$500M for clean hydrogen technology manufacturing and recycling R&D
- Aligns with Hydrogen Shot priorities by directing work to reduce the cost of clean hydrogen to \$2 per kilogram by 2026
- Requires developing a National Hydrogen Strategy and Roadmap

President Biden Signs the **Bipartisan Infrastructure Bill** on November 15, 2021. Photo Credit: Kenny Holston/Getty Images

Inflation Reduction Act

Includes production tax credit for clean Hydrogen

Fossil Energy and Carbon Management

Inflation Reduction Act – 45Q Modifications

	Old	New
Commence Construction	January 1, 2026	January 1, 2033
DAC Facility	100,000 metric tons/year*	1,000 metric tons/year
Electric Generator	500,000 metric tons/year*	18,750 metric tons/year
All other facilities	100/000 metric tons/year*	12,500 metric tons/year
Saline Storage Credit	\$50/metric ton	\$85/metric ton (industry and power); \$180/metric ton (DAC)
EOR and Conversion Credit	\$35/metric ton	\$60/metric ton (industry and power); \$130/metric ton (DAC)

* Non-EOR Conversion facilities were previously 25,000 metric tons/year regardless of facility/source.

Notes: New Modifications allows up to 5 years for direct pay (up to 12 years certain entities)

Inflation Reduction Act – Clean H2 Production Tax Credit

Commence Construction	January 1, 2033
kg of CO2 per kg of H2	Credit Value (\$/kg)
4 to 2.5	0.60
2.5 to 1.5	0.75
1.5 to 0.45	1.00
0.45 to 0	3.00

Clean hydrogen: lifecycle greenhouse gas emissions rate of no greater than 4 kilograms of CO2 equivalent ("**CO2e**") gas per kilogram of hydrogen. Section 45V of the Act creates a new tax credit for the production of qualified clean hydrogen (the "**Clean Hydrogen Production Credit**").

As an alternative to the Clean Hydrogen Production Credit, taxpayers may elect the Section 48 Investment Tax Credit (the "**ITC**") with respect to clean hydrogen production facilities, receiving an ITC of up to 30% depending on the carbon intensity of the production process.

The Clean Hydrogen Production Credit is not available, however, for clean hydrogen produced at a facility that also includes carbon capture equipment for which the Section 45Q carbon capture tax credit is allowed to any taxpayer.

Hydrogen Energy Earthshot Initiative (HEEI)

Cost of Clean Hydrogen to \$1 per 1 kg in 1 Decade (1-1-1)

- Goal to accelerate innovations and spur demand of clean hydrogen
- Enable decarbonization of high-polluting heavy-duty transportation and industrial sectors, while delivering good-paying clean energy jobs and realizing a net-zero economy by 2050.

Goals for Clean Hydrogen Production Systems of FECM

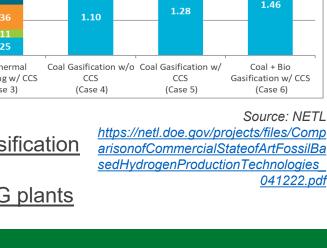
- Gasification of biomass, waste streams, and recovered coal waste with CCS for net-zero carbon
- Reforming with CCS for near net-zero carbon
- Methane emissions reduction in the upstream natural gas supply chain
- Renewable natural gas sources
- Solid Oxide Electrolysis Cell (SOEC) or Reversible Solid oxide fuel cell (R-SOFC)

HEEI Goals:

- \$1/kg H₂
- One decade (i.e., 2030)
- "1, 1, 1"

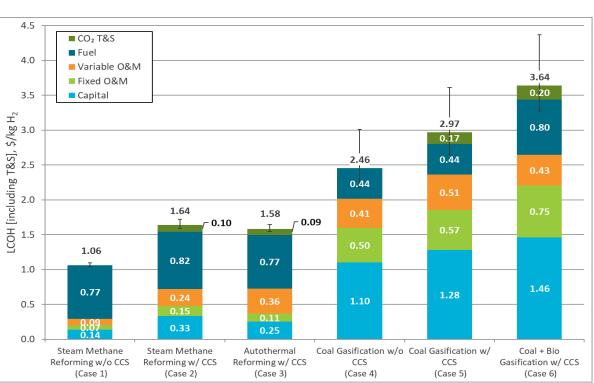
Comparison of Commercial, SOTA, Fossil-Based Hydrogen Production

Objectives

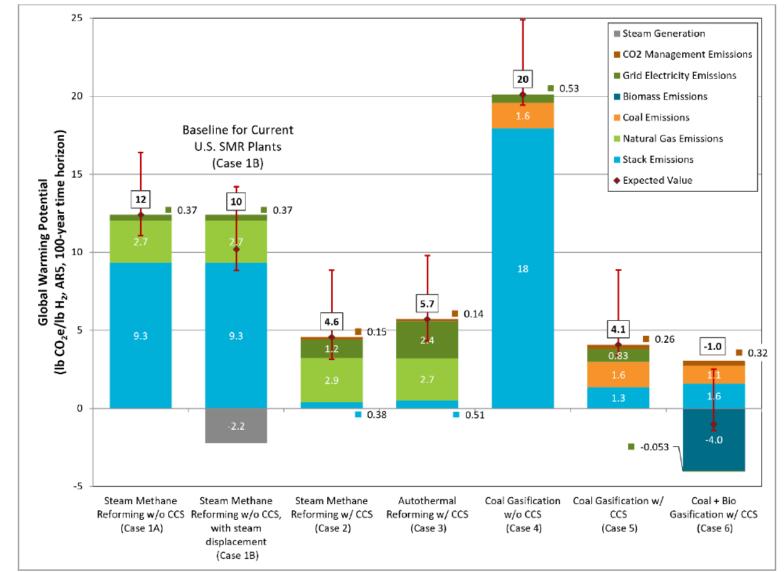

- Study of fossil-to-H₂ production methods using <u>current</u>, commercial technologies¹
- Estimated levelized cost of hydrogen (LCOH) production
- Estimated lifecycle (LCA) greenhouse gas (GHG) footprint
- Identified R&D areas to improve performance, cost, and LCA GHG profiles

Justification

 Establish technology references for DOE FECM R&D program planning to reduce LCOH and GHG footprint of future fossil-to-H₂ plants


Highlights

- \$1.58/kg H₂ lowest LCOH of cases examined w/ CCS Auto-Thermal Reforming (ATR)
- 3.9 kg CO₂e/kg H₂ lowest LCA GHG profile of fossil-only cases examined w/ CCS <u>coal gasification</u>
- Co-gasifying 43.5 wt.% biomass with coal enables <u>net-zero GHG H₂ production</u>
- NG infrastructure and grid electricity are significant contributors to LCA GHG emissions of NG plants


Source: NETL

041222.pdf

CO₂e Life Cycle Emissions for All Commercial H₂ Production Methods

- Natural gas emissions represent a major portion of total process emissions of all reforming cases with CCS.
- Coal gasification has 2x the emission profile of SMR (both without CCS).
- It is possible to reach negative emissions when cogasifying with biomass and pairing it with CCS.

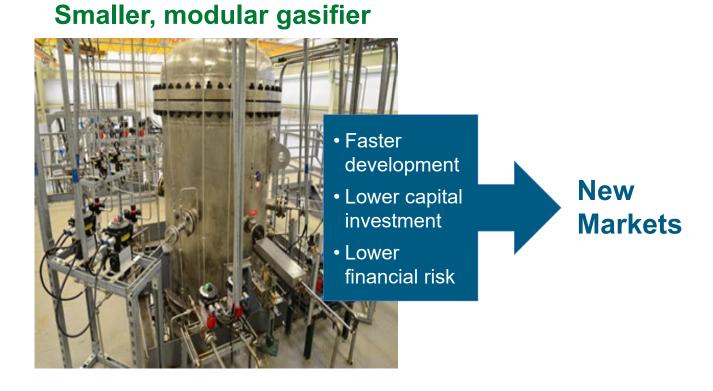
Source: NETL

https://netl.doe.gov/projects/files/ComparisonofCommercialStateofArtFossilBasedHydrogenProductionTechnologies_041222.pdf

Gasification Systems Program Goals

FECM Gasification Systems Goals

- Cost-effective clean hydrogen production for fuels synthesis and decarbonization (especially industry)
- Remediate/utilize wastes (unrecyclable plastics, MSW, coal waste)
- Blend carbon-neutral biomass: reduce GHG emissions
- Modular gasification in disadvantaged areas: provide jobs, remediate legacy sites
- Reduces disposal burden of wastes in landfills
- Gasification with capture: carbon neutrality/negative carbon potential

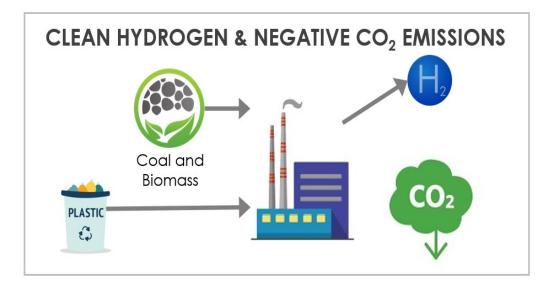


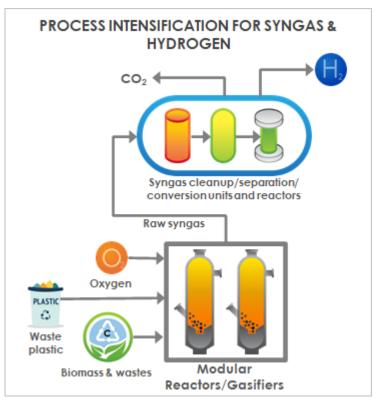
fecm.energy.gov

Gasification Systems Approach

Modular Technology: Helping Gasification Access New Markets

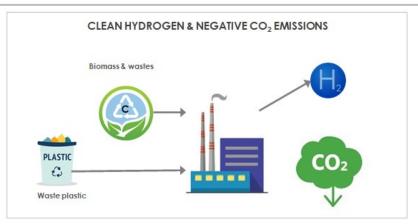
Business Impacts:


- <u>CapEx/OpEx reduction:</u> through process intensification, plant-wide cost reduction opportunities
- **Reduce investment risk:** reduce the cost of functional prototypes
- <u>Regional opportunities:</u> enable local markets to quickly and costeffectively utilize local feedstocks (including biomass and wastes)

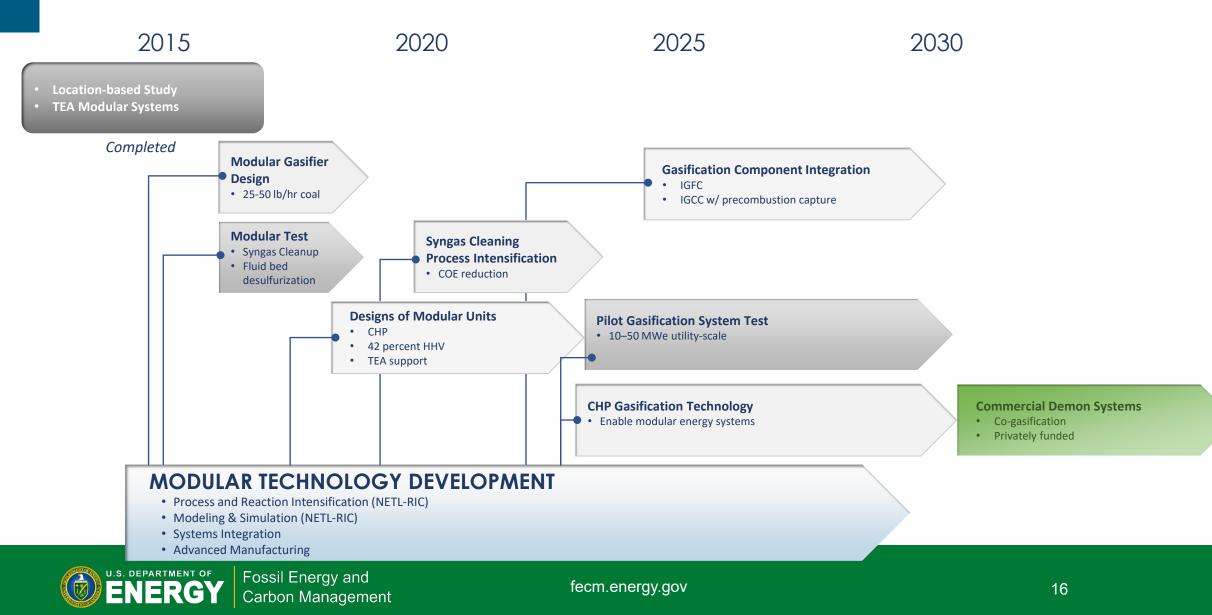

Addressing Technology Challenges

Today's Approach

- Multiple Unit Ops/Separate Reactors & Process Steps
 - Gasifier with feedstock preparation
 - Syngas cleanup
 - Multiple-stage Water Gas Shift
 - CO₂ separation
- Air Separation
 - Cryogenic (big investment, scale limitation)
 - SOTA membranes (costly, purity limitations)
- Hydrogen Separations/Carbon Capture
 - Energy intensive (PSA, solvent approaches)


Gasification Systems Program Areas

Innovative gasifiers and zero emissions systems


Efficient ASUs for any net-zero system scale

Biomass blending enables Bioenergy with Carbon Capture & Storage (BECCS)

Feedstock-flexible systems accommodate seasonal/limited supply of biomass and MSW/plastics

Gasification Technology Development Timeline

Gasification Pathways to Clean Hydrogen Production

Current R&D Focus

- Biomass feed implements BECCS for net zero or negative GHG emissions
- Gasification allows use of wastes (MSW, plastic, biomass, etc.) as feedstock
- Modular gasification at waste impoundments promotes environmental justice
 - Distributed deployment near feedstock
- Cost reduction via modularity and process intensification

Current Projects & FOAs

FY21 FOA 2376 Gasification selected four projects for enabling co-gasification of blended coal, biomass and plastic wastes to produce clean hydrogen

FY 22 FOA 2400 Gasification 13 projects funded in Gasification AOIs

- AOI 1—Clean Hydrogen Cost Reductions via Process Intensification & Modularization for Hydrogen Shot
- AOI 2A—Clean Hydrogen from High-Volume Waste Materials and Biomass
- AOI 2B—Sensors & Controls for Cogasification of Waste Plastics in Production of Hydrogen with Carbon Capture

FOA 2400 Awards - Gasification

AOI 4- Advanced Air Separation for Low-Cost H2 Production via Modular Gasification

FOA Issue Date	08/26/2022
Submission Deadline for Full Applications	10/25/2022
Sr. Technical Briefing	3/9/2023
Date for Selection Notifications	3/24/2023
Date for Award	June 2023

FECM Funding Opportunities – FY23

FOA 2400 New AOI

Clean Hydrogen Production, Storage, Transport, and Utilization to Enable A Net Zero Carbon Economy

Objective

Develop technologies enabling clean hydrogen production, transport, storage, and use in the energy sector, including electricity, heat, transportation, and industrial use.

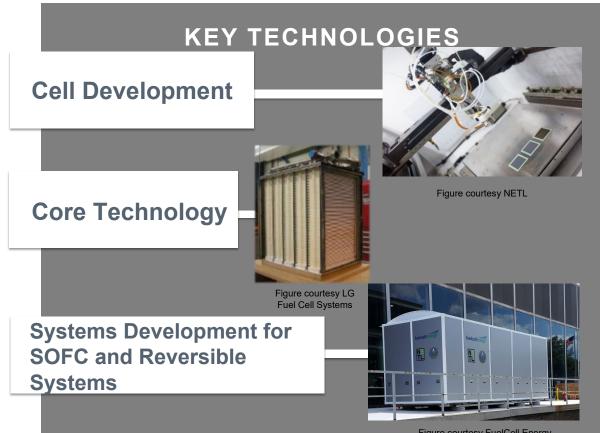
FOA Areas of Interest

Significant advances in co-gasification technology and economics are needed in areas of interest

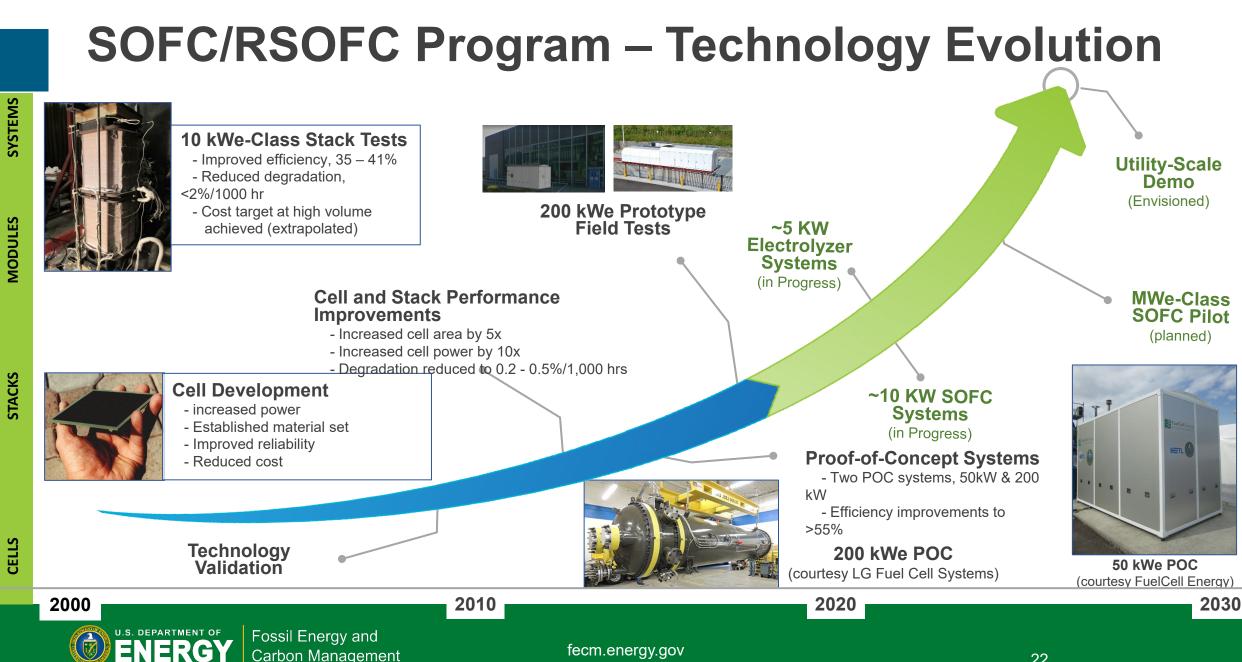
- Issue Date: FY23
- Application Submittal Deadline: TBD Selection Notifications: TBD
- Awards: TBD

- Life-Cycle Net Zero-Carbon and Negative-Carbon Emitting Technologies for Clean Hydrogen Production from Modular Gasification
- Sensors & Controls for Co-gasification of Waste Feedstocks in Production of Hydrogen with Carbon Capture

Advanced Gasification Program Budget History


Gasification Program Funding (\$M)

FY 23	FY 23	FY 24
Requested	Enacted	Requested
26	28	30



SOFC/RSOFC R&D Goals

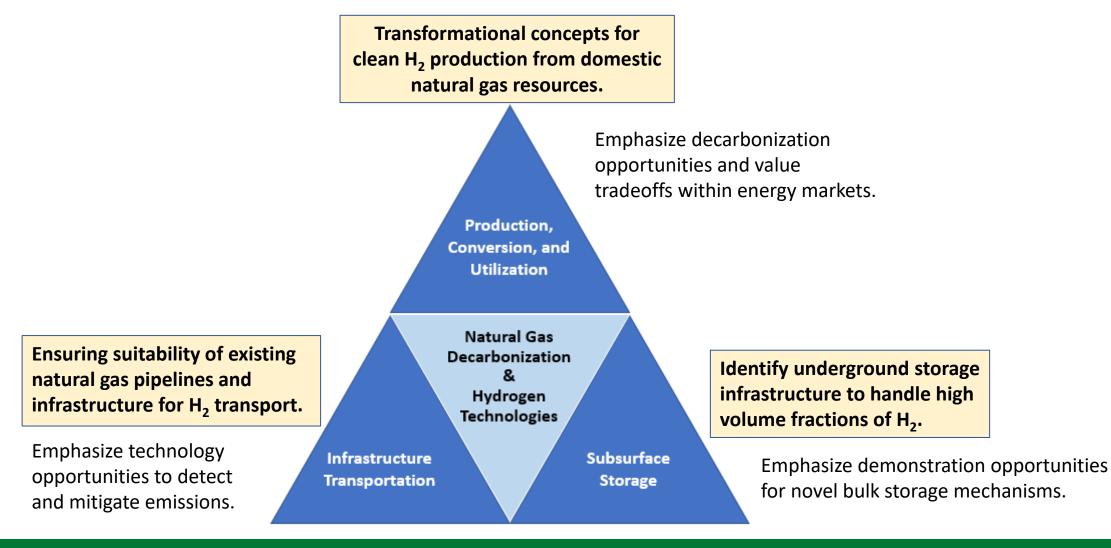
- Highest efficiency and lowest cost electricity generation from hydrogen/natural gas/syngas
- Efficient and cost-effective distributed/utility scale hydrogen production (RSOFC)
- Flexible modular hybrid SOFC/SOEC system design depending on grid
- Hydrogen production as an energy storage or power production from hybrid RSOFC systems
- Data center backup power systems & distributed H2 production for short term (kW - MW scale)
- Utility scale hybrid RSOFC system for long term (10 MW - 50 MW)

22

RSOFC Pathways to Clean Hydrogen Production

Current R&D Focus

- Conduct R&D to address critical needs and mature technology for reversible solid oxide fuel cell technology for hydrogen production
 - Cell materials and fabrication to improve performance and lower cost
 - Understanding cell and stack degradation mechanisms
 - Balance-of-plant components
 - cost reduction and reliability improvement
- Acquired fabricating and operational experience on integrated, prototype field tests – SOFCs and RSOFCs


Current Projects

- FY20 FOA 2300 selected 12 projects and among them, 8 projects are RSOFC systems development for hydrogen and electricity production including the validation and development of materials and systems required for improving the cost, performance and reliability.
- FY 21 FOA 2400 selected 8 projects focusing on solid oxide electrolysis cell (SOEC) technology development for clean hydrogen production.

200 kWe integrated SOFC Power System: ~2,000 fullscale cells (Photo courtesy FuelCell Energy

Natural Gas Decarbonization & Hydrogen Technologies

FOA2400 Awards – Natural Gas Decarbonization & Hydrogen Technologies

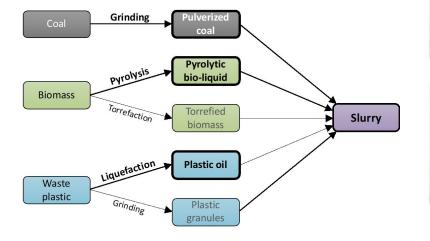
Date for Award: June 2023

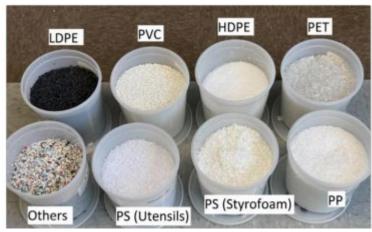
- AOI 14 Clean Hydrogen Production and Infrastructure for Natural Gas
 Decarbonization
 - AOI 14a Methane pyrolysis/decomposition, in situ conversion, or cyclical chemical looping reforming
 - AOI 14b Hydrogen Production from Produced Water
- AOI 15 Technologies for Enabling the Safe and Efficient Transportation of Hydrogen Within the U.S. Natural Gas Pipeline System
- AOI 16 Fundamental Research to Enable High Volume, Long-term Subsurface Hydrogen Storage

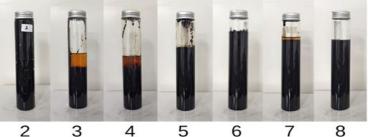
Fossil Energy and Carbon Management

Questions?

Thank You!

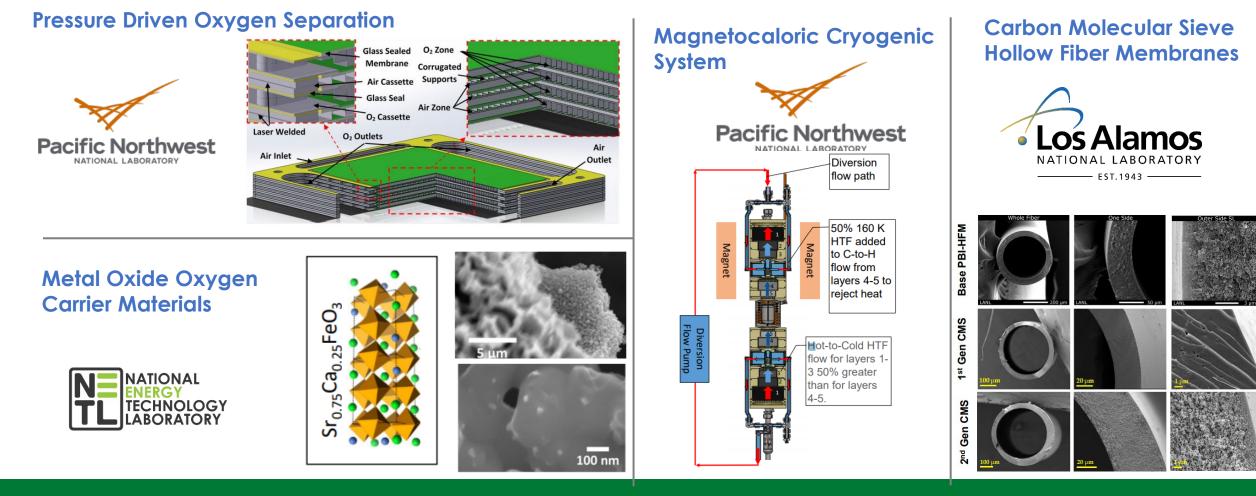

Jai-woh Kim, DOE HQ


Sr. Program Manager 240-449-5584 Jai-woh.Kim@HQ.DOE.GOV



Biomass/Wastes Co-Gasification

- Fluidized-Bed Gasification of Coal-Biomass (Southern Pine)-Waste Plastic Blends -Auburn University
- Development and Characterization of Densified Biomass-Plastic-Coal Blends for Entrained Flow Gasification-UKy
- Testing of a Moving-Bed Gasifier using Coal, Biomass (Corn Stover), and Waste Plastic (Car Fluff) Blends -EPRI
- Entrained-Flow Gasification of Blends of Coal, Biomass and Plastic by Creating Slurries of Plastic Oil, Pyrolysis Oil & Coal- University of Utah



Air Separation/Oxygen Production R&D

Innovative air separation/oxygen production technologies for zero emissions gasification systems-National Laboratories


RSOFC in Progress

FuelCell Energy

Stack size for system demonstration

0.87 KW SOFC 1.6 KW SOEC 2.8 KW SOFC

5.4 KW SOEC 6.7 KW SOFC 12.7 KW SOEC

PNNL

Design, build and validate operation of a 5-kW coelectrolysis stack with an active cell area of 300 cm² for H2 and CO/H2 production

INL

- 30-kW electrolysis mode/10-kW fuel cell mode testing at INL Site
- INL is testing RSOFC systems manufactured by OxEon
- Improve catalyst in the fuel electrode - MIT

