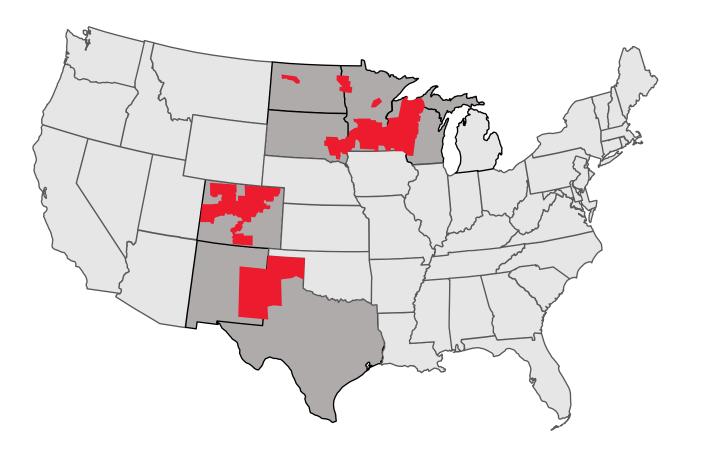


Renewables Integration for 85% carbon emissions reduction by 2030, and beyond Grid Performance Evaluation of IBRs


Hari Singh, PhD, PE

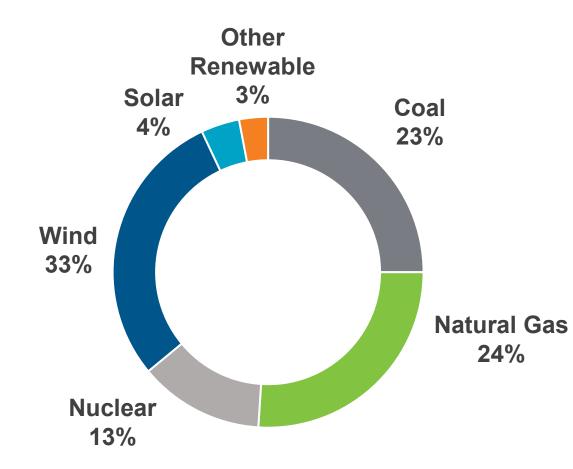
Integrated System Planning

NREL Power Electronics Grid Interface (PEGI) Workshop May 24-25, 2023

© 2023 Xcel Energy

Xcel Energy

Serving eight states


3.7 million electricity customers2.1 million natural gas customers

Nationally recognized leader:

- Wind energy
- Energy efficiency
- Carbon emissions reductions
- Innovative technology
- Storm restoration

Data based on 2021 Sustainability Report. To view full report: xcelenergy.com/sustainability.

2022 Energy Mix – Xcel Energy

Clean Energy Transition

2005

21% Carbon-free

Nuclear, Wind, Solar and Other Renewables

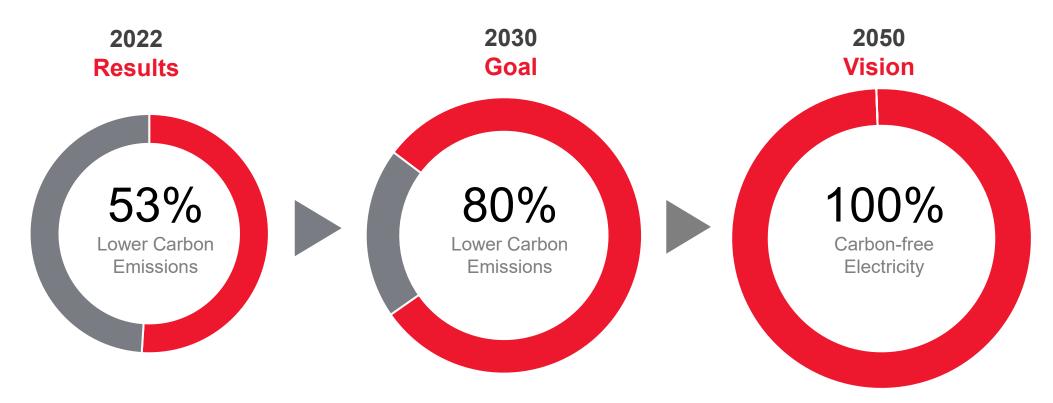
2022

53% Carbon-free

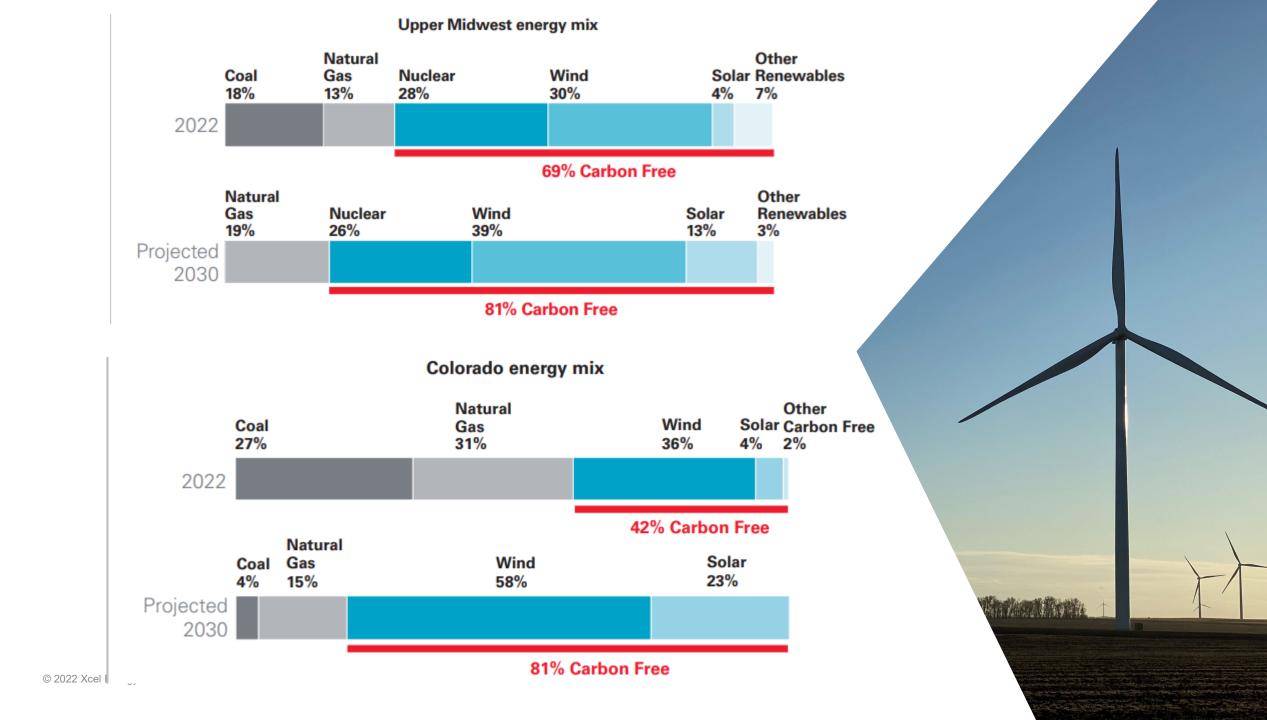
Nuclear, Wind, Solar and Other Renewables

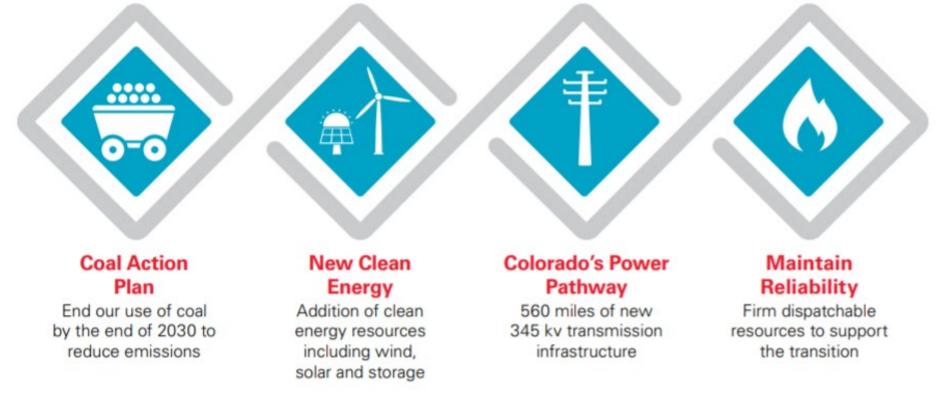
79% Carbon-free

Nuclear, Wind, Solar and Other Renewables


Coal and Natural Gas

Coal and Natural Gas


Coal and Natural Gas

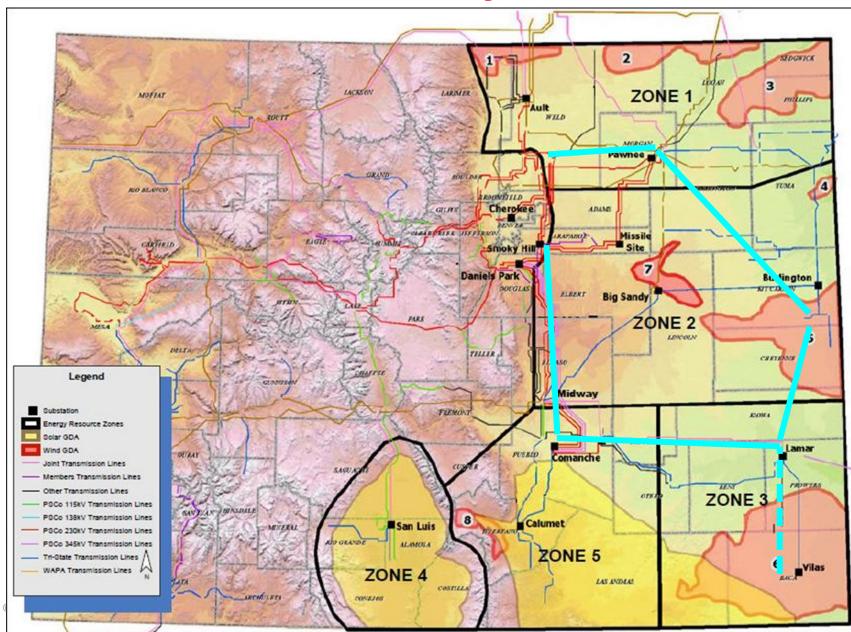

A Bold Vision for a Carbon-free Future

Company-wide carbon emissions reductions from serving our customers, compared to 2005

Colorado's Clean Energy Plan (CEP) for 80x2030 Goal

Resource Additions between 2025 and 2030: 5700 MW on Tx, 1200 MW on Dx

Wind = 2400 MW


Solar = 1600 MW

Firm Dispatchable = 1300 MW

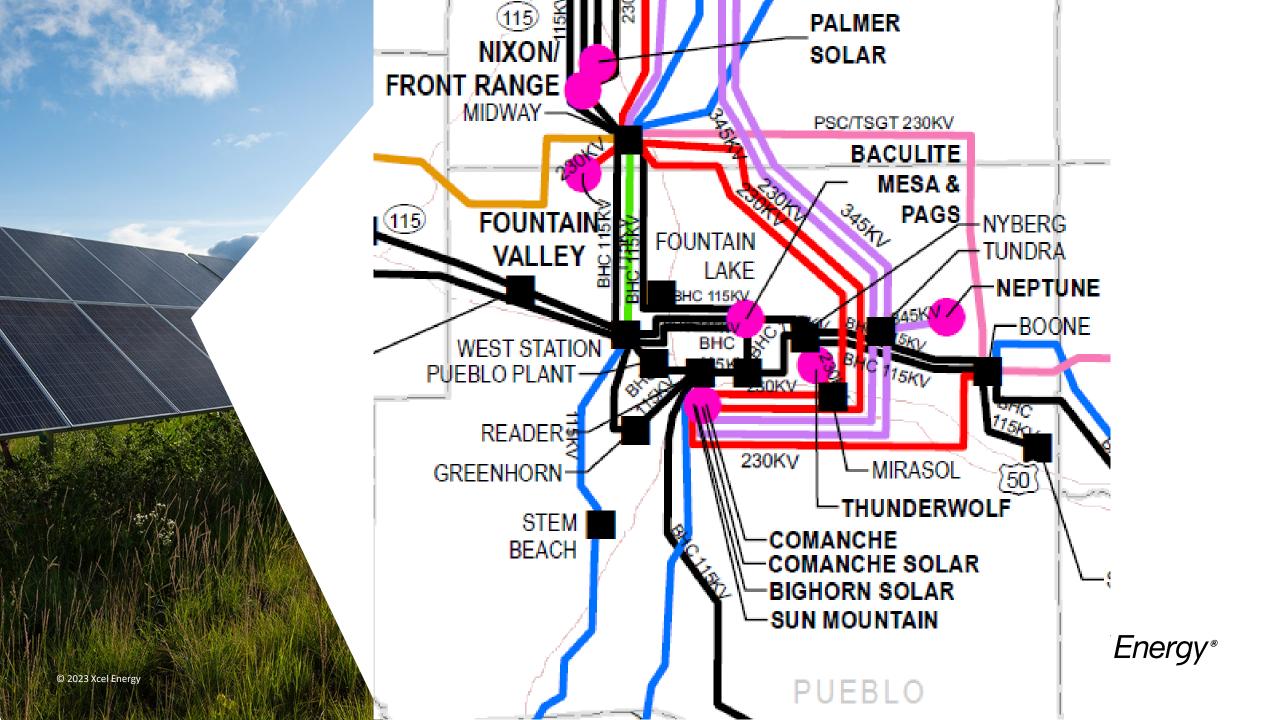
Distributed Solar = 1200 MW

Storage = 400 MW

Colorado's Power Pathway for Access to ERZs

Comanche Area Resource Transformation 2022-2025

Aggregate Comanche Coal Generating Plant Retirements = 1410 MW


• Com-1 = 325 MW (EOY 2022) Com-2 = 335 MW (EOY 2025) Com-3 = 750 MW (EOY 2030)

Aggregate VRE Resource (i.e. IBR) Additions in Comanche Area = 1135 MW

- Three PV Solar Gen plants at Comanche 230kV (Y2022) = 120+240+200 = 560 MW
- Two Hybrid Gen plants (PV Solar + Battery Storage) in electrical proximity to Comanche (Y2023)
- Thunder Wolf @230kV POI = 250 MW
 Neptune @345kV POI = 325 MW

Acceptable System Performance Study performed using EMT models for VRE IBRs to evaluate:

- Voltage Ride-Through (VRT) capability
- PLL (Phase Locked Loop) Instability
- IBR Unit / Plant Controller Interactions or Instability

Table 2-1: Selected Disturbances

Disturbance				
No.	Description	Category		
1	3ph fault at Comanche 345 kV followed by loss of Comanche - Daniels Park 345 kV and Tundra - Daniels Park 345 kV lines	P7.1		
2	3ph fault at Comanche 230 kV followed by loss of Comanche - Midway 230 kV and Mirasol - Midway 230 kV lines	P7.1		
3-1	3ph fault at Comanche 230 kV followed by loss of Comanche - Mirasol 230 kV line	P1.2		
3-2	3ph fault at Mirasol 230 kV followed by loss of Mirasol - Midway 230 kV line	P1.2		
4-1	3ph fault at Comanche 345 kV followed by loss of Comanche - Tundra 345 kV line	P1.2		
4-2	3ph fault at Tundra 345 kV followed by loss of Tundra - Daniels Park 345 kV line	P1.2		
5	3ph fault at Comanche 230 kV followed by loss of Comanche - Boone 230 kV line	P1.2		

Scenarios	Comanche Area Aggregate IBRs	3ph Fault Clearing Time	Notes	
Base	1135 MW	345kV = 4.5 cy 230kV = 5.5 cy	At Coman = 560 MW Proximate = 575 MW Normal Clearing Time (NCT)	
1	1135 MW	345kV = 18 cy 230kV = 22 cy	4 x NCT	
2	2360 MW (~2 x Base)	same as above	At Coman = 1210 MW Proximate = 1150 MW	
3	3020 MW (~2.7 x Base)	same as above	At Coman = 1860 MW Proximate = 1150 MW	Xcel Energy®
4	3020 MW	NCT		
5	3020 MW	NCT	SynCond @ Coman	

Disturbance	Base Commis	Sensitivity Scenario						
No.	Base Scenario	1	2	3	4	5		
1				(1)	(2)	(3)		
2								
3-1								
3-2				Net T	Net Tested			
4-1		Not Tested			NOUT	Not Tested		
4-2								
5			Not Tested					
(1) System unable to maintain stability								
(2) System is stable with undamped oscillations								
(3) System is stable with undamped oscillations. Oscillation magnitude smaller compared to (2)								

Scenarios	Comanche Area Aggregate IBRs	3ph Fault Clearing Time	Notes	
Base	1135 MW	345kV = 4.5 cy 230kV = 5.5 cy	At Coman = 560 MW Proximate = 575 MW Normal Clearing Time (NCT)	
1	1135 MW	345kV = 18 cy 230kV = 22 cy	4 x NCT	
2	2360 MW (~2 x Base)	same as above	At Coman = 1210 MW Proximate = 1150 MW	
3	3020 MW (~2.7 x Base)	same as above	At Coman = 1860 MW Proximate = 1150 MW	Xcel Energy®
4	3020 MW	NCT		
5	3020 MW	NCT	SynCond @ Coman	

EMT (PSCAD) Model Verification (Validation?) Tests

Model Usability Verification

Model Electrical Configuration Verification

Plant Controller Verification

Basic Performance Verification

- Initialization Test
- Balanced / Unbalanced Fault Ride-through Test
- Overvoltage Ride-through Test
- Voltage & Active Power Reference Step Change Tests
- Grid Frequency Response and Ride-through Test
- Grid Voltage Phase-Angle Change Ride-through Test
- POI SCR Change Test

© 2023 Xcel Energy

High Fidelity Validated IBR Models – the Value

- Essential for gaining confidence in grid performance study results
 - ✓ identify grid performance improvement need and evaluate solutions in planning horizon
 - establish operating limits (SOLs/IROLs) in operating horizon
- Are simulation-based IBR model verification/validation tests sufficient? probably better than nothing
- Is system disturbance event-recording based IBR model validation ideal? perhaps, but does not help with predictive grid performance studies
- Is laboratory-based IBR model testing & validation the pragmatic middle ground? if capable of validating plant-level models
- Could a grid-interface platform help enhance confidence in IBR model fidelity and/or help evaluate grid reliability solutions? absolutely!

