Scalable Integrated Infrastructure Planning Model

NREL created the Scalable Integrated Infrastructure Planning (SIIP) modeling framework to effectively build, solve, and analyze the scheduling problems and dynamic simulations of quasi-static infrastructure systems.

Multiple triangles in different shades of blue stacked within each other and facing different directions.

To meet the needs of evolving energy infrastructure systems, the SIIP model develops a foundation to fundamentally advance the nation's ability to model individual and integrated infrastructure systems at a range of spatial and temporal scales.


The SIIP model applies NREL's capabilities in advanced computer science, visualization, applied mathematics, and computational science to create a first-of its-kind flexible modeling framework that incorporates new solution algorithms, advanced data analytics, and scalable high-performance computing.

Open-Source Software Suite

The first and most mature application deployed in the SIIP model is SIIP::Power, which consists of a suite of open-source software packages available on GitHub:

Multiple triangles in different shades of blue stacked within each other and facing different directions.

  • PowerSystems.jl
    Provides an efficient power systems data specification along with support for parsing standard power systems data file formats and basic data transformations and calculations.
  • PowerSimulations.jl
    Enables a range of quasi-static power systems scheduling problem specifications, which includes unit commitment and economic dispatch, automatic generation control, and nonlinear optimal power flow—along with sequential problem specifications to enable production cost modeling techniques.
  • PowerSimulationsDynamics.jl
    Allows for the simulation of power system dynamics.
  • PowerGraphics.jl
    Offers analytical capabilities to visualize simulation results.

Future Development Plans

Ongoing development will integrate problem decomposition and parallel optimization capabilities to further enhance the computational performance of SIIP tools. Enhanced connections to NREL's WIND Toolkit and National Solar Radiation Database renewable energy data will ease the lift to create new data sets.

NREL is also working to expand the SIIP framework to represent other infrastructure systems and sectoral interdependencies in the future.

Related Publications

Transient Simulations With a Large Penetration of Converter-Interfaced Generation: Scientific Computing Challenges And Opportunities, IEEE Electrification Magazine (2021)

Computational Experiment Design for Operations Model Simulation, Electric Power Systems Research (2020)

Slack: @NREL-SIIP | Email: