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Project Introduction 
This initiative, referred to as Behind-the-Meter Storage (BTMS), will focus on novel critical-materials-free 
battery technologies to facilitate the integration of electric vehicle (EV) charging, solar power generation 
technologies, and energy-efficient buildings while minimizing both costs and grid impacts. For extreme fast-
charging at levels of 350 kW or higher, novel approaches are required to avoid significant negative cost and 
resiliency impacts. However, it is reasonable to assume that BTMS solutions would be applicable to other 
intermittent renewable energy generation sources or short-duration, high power-demand electric loads. 
BTMS research is targeted at developing innovative energy-storage technology specifically optimized for 
stationary applications below 10 MWh that will minimize the need for significant grid upgrades. Additionally, 
avoiding excessive high-power draws will eliminate excess demand charges that would be incurred during 
350-kW fast-charging using current technologies. The key to achieving this is to leverage battery storage 
solutions that can discharge at high power but be recharged at standard lower power rates, acting as a power 
reservoir to bridge to the grid and other on-site energy generation technologies such as solar photovoltaics 
(PV), thereby minimizing costs and grid impacts. To be successful, new and innovative integration treatments 
must be developed for seamless interaction between stationary storage, PV generation, building systems, and 
the electric grid. 

Key components of BTMS will address early-stage research into new energy-generation and building-
integration concepts, critical-materials-free battery energy-storage chemistries, and energy-storage designs 

mailto:anthony.burrell@nrel.gov
mailto:samuel.gillard@ee.doe.gov
mailto:samuel.gillard@ee.doe.gov
mailto:anthony.burrell@nrel.gov


 

  
  

 

 
  

 
     

 
   

  
  
 

    
  

 
 

    
    

    

 
 

  

     
 

    
 

  
  

 
 

   
   

   
   

    
  

    
  
 

     
   

  

with a focus on new stationary energy-storage strategies that will balance performance and costs for expanded 
fast-charging networks while minimizing the need for grid improvements. 

Objectives 
A cohesive multidisciplinary research effort to create a cost-effective, critical-materials-free solution to BTMS 
by employing a whole-systems approach will be taken. The focus of this initiative is to develop innovative 
battery energy-storage technologies with abundant materials applicable to EVs and high-power charging 
systems. Solutions in the 1‒10 MWh range will eliminate potential grid impacts of high-power EV charging 
systems as well as lower installation costs and costs to the consumer.  

Although many lessons learned from EV battery development may be applied to the BTMS program, the 
requirements for BTMS systems are unique—carrying their own calendar-life, cycle-life, and cost challenges. 
For example, EV energy-storage systems need to meet very rigorous energy-density and volume requirements 
to meet consumer transportation needs. Despite that, current stationary storage systems use batteries designed 
for EVs due to high volumes driving down costs. This creates another market demand for EV batteries, further 
straining the EV battery supply chain and critical-material demand. 

By considering BTMS electrochemical solutions optimized for these applications with less focus on energy 
density in mass and volume, the potential for novel battery solutions is very appealing. Furthermore, the 
balance-of-plant (BOP) for a BTMS battery system, or the cost of everything minus the battery cells, is 
thought to be upwards of 60% of the total energy-storage system cost. In contrast, the EV’s BOP costs make 
up roughly 30% of the total battery cost. Therefore, BTMS will also need to focus on reducing BOP cost 
through system optimization to realize desired cost targets. 

The design parameters are needed to optimize the BTMS system for performance, reliability, resilience, safety, 
and cost. 

The objectives for the project are to: 

• Produce BTM battery solutions that can be deployed at scale and meet the functional requirement of 
high-power EV charging. 

• Use a total-systems approach for battery storage to develop and identify the specific functional 
requirements for BTMS battery solutions that will provide novel battery systems in the 1‒10 MWh range 
at $100/kWh installed cost—and able to cycle twice per day, discharging for at least 4 hours, with a 
lifetime of roughly 20 years or at least 8,000 cycles. 

Approach 
A cohesive multidisciplinary research effort—involving NREL, INL, SNL, and ORNL—will create a cost-
effective, critical-materials-free solution to BTMS by employing a whole-systems approach. The focus of this 
initiative is to develop innovative battery energy-storage technologies with abundant materials applicable to 
PV energy generation, building energy-storage systems, EVs, and high-power charging systems. Solutions in 
the 1‒10 MWh range will enable optimal integration of PV generation from a DC-DC connection, increase 
energy efficiency of buildings, eliminate potential grid impacts of high-power EV charging systems, and lower 
installation costs and costs to the consumer. 

Many lessons learned from EV battery development may be applied to the BTMS program, but the 
requirements for BTMS systems are unique—carrying their own calendar-life, cycle-life, and cost challenges. 
For example, EV energy-storage systems need to meet very rigorous energy-density and volume requirements 
to meet consumer transportation needs. Despite that, current stationary storage systems use batteries designed 
for EVs due to high volumes that drive down the costs. This creates another market demand for EV batteries, 
further straining the EV battery supply chain and critical-material demand. 

By considering BTMS electrochemical solutions optimized for these applications with less focus on energy 
density in mass and volume, the potential for novel battery solutions is very appealing. Furthermore, the BOP 
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for a BTMS battery system, or the cost of everything minus the battery cells, is thought to be upwards of 60% 
of the total energy-storage system cost. In contrast, the EV’s BOP costs make up roughly 30% of the total 
battery cost. Therefore, BTMS will also need to focus on reducing BOP cost through system optimization to 
realize desired cost targets. 

Integration of battery storage with PV generation, energy-efficient buildings, charging stations, and the electric 
grid will enable new and innovative control strategies. The design parameters are needed to optimize the 
BTMS system for performance, reliability, resilience, safety, and cost. 

Figure 1. Overview of BTMS relevance. 



 

  

  
 

 

    
    

      
 

 
 

 
 

 
 

 
 

  
 

 
 

  

   

  
 

 
 

   
 

 
  

 
   

   

 
 

   
 

BTMS Analysis : Inputs and Outputs of Model 

National Renewable Energy Lab (NREL) 
Margaret Mann, Madeline Gilleran, Feitau Kung, Matt Mitchell, Darice Guittet, Eric Bonnema, Jason 
Woods, Chad Hunter 

Background 
The Behind-the-Meter-Storage (BTMS) Analysis project is funded by the Buildings Technologies Office 
(BTO), the Vehicle Technologies Office (VTO), and the Solar Energy Technologies Office (SETO) within the 
Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE). The mission of 
EERE is to create and sustain American leadership in the transition to a global clean energy economy. Its 
vision is a strong and prosperous America powered by clean, affordable, and secure energy 
www.energy.gov/eere). Increasing adoption of electric vehicles (EV), solar photovoltaic (PV), battery and 
thermal storage, and energy-efficient buildinglif technologies is expected to have significant impact on energy 
use and domestic manufacturing. While each of these technologies can make contributions to the U.S. 
economy, integrating them in ways that optimize cost and energy flows for varying energy demand and climate 
conditions across the country can lead to multiplicative positive impacts. 

BTMS research is targeted at developing innovative energy storage technology specifically optimized for 
stationary applications that will enable extreme fast charging of EVs, allow for enhanced grid interactive 
energy efficient buildings coupled with photovoltaic resources, while minimizing grid impacts. 

EV adoption is expected to grow significantly over the coming years, and could have a significant, and 
potentially negative effect on grid infrastructure. Additionally, the rapid penetration of solar PV generation 
installed on buildings is leading to new challenges for the electric grid. In response to the potentially large and 
irregular demand from EVs, along with changing load profiles from buildings with on-site generation, utilities 
are evaluating multiple options for managing dynamic loads, including time-of-use pricing, demand charges, 
battery storage, and curtailment of variable generation. Buildings, as well as commercial, public, and 
workplace EV charging operations, can use energy storage (e.g., batteries, thermal energy storage, etc.) 
coupled with on-site generation to manage energy costs as well as provide resiliency and reliability for EV 
charging and building energy loads. 

The key question in this project is the following: what are the optimal system designs and energy flows for 
thermal and electrochemical energy storage systems at sites with on-site photovoltaic (PV) generation and 
electric vehicle (EV) charging, and how do solutions vary with climate, building type, and utility rate 
structure? 

The primary objective function for most analyses in this project will be the Levelized Cost of Charging, or 
LCOC. This metric, measured in cents/kWh, is the minimum price that EV station owners would need to 
charge users in order to “break even”, or to pay back all capital and operating expenses over the lifetime of the 
system. A standardized discounted cash flow rate of return (DCFROR) analysis methodology is being utilized 
to calculate LCOC. 

A high-level schematic depicting the various behind-the-meter systems, including stationary battery, solar PV, 
electric vehicle supply equipment (EVSE), and thermal energy storage (TES), can be seen in Figure 1. 

https://www.energy.gov/eere/about-office-energy-efficiency-and-renewable-energy
www.energy.gov/eere
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Figure 1. Schematic Depicting the Default Combination of Technologies for BTMS Analysis 

To complete this analysis, the BTMS Analysis team is developing a multitool simulation platform called 
EnStore, which will be able to capture performance characteristics and interactions between disparate 
technologies with high fidelity. In researching existing tools used in this space, the team concluded that no one 
existing tool could complete the multisystem, detailed analysis required for this project, but rather, a 
combination of several existing tools would be necessary. This project will leverage the following tools: the 
REoptTM energy system optimization tool (Cutler et al. 2017), System Advisor Model (SAM) (Blair et al. 
2018), Electric Vehicle Infrastructure Projection Tool (EVI-Pro) (Wood et al. 2018), the EnergyPlusTM 

building simulation engine (DOE 2019a), the OpenStudio® suite of supporting building simulation 
applications (DOE 2019b), and the Utility Rate Database (URDB) (DOE 2019c). 

This report, submitted as Quarterly Milestone 1, will detail the main categories of inputs and outputs for the 
EnStore simulation platform. It will also describe related near-term improvements to existing tools that are 
expected to improve the capabilities of EnStore. 

EnStore Model Process Flows 
For any given application of EnStore, the simulation process can be divided into five major stages as shown in 
Figure 2. In the “Pre-Processing” stage, the team will prepare the inputs required to initiate an EnStore 
simulation. The next three stages, “Seeding,” “Exploration,” and “Reporting,” include processes managed and 
executed by EnStore code. In the “Post-Processing” stage, the team will use output files created by EnStore to 
answer research questions for the associated application. 



 

  

 
 

 
   

 
   

  
   

  
   

  
 

  
  

 
 

 
  

   
 
 

  
  

 
 

   

 
 

  
 

Figure 2. Major stages of the multitool workflow 

In the Pre-Processing Stage, to generate inputs required for EnStore, the team plans to use a combination of 
tools, including the following: 

• The team will use OpenStudio and EnergyPlus to generate a baseline building model that will be 
modified later in the Exploration Stage. 

• These same building model may also be used to generate a load profile for use by REopt in the 
Seeding Stage. Alternatively, for some applications, the load profile for REopt may be generated using 
meter data or a combination of meter and model data. 

• The team will use EVI-Pro and a DC Fast Charge (DCFC) model (created in the preceding FY19 
project and completed in the first quarter of this FY20 project) to generate an EVSE load profile. 

• Stationary battery cost inputs will be informed by the use of BatPaC, a source of battery cost estimates 
that are dependent on battery chemistry, as well as market-relevant updates. 

The team will combine these and other inputs into a set of standardized input files prior to each EnStore 
simulation. The team will then use these files to indicate which system parameters will be variable or fixed for 
a given application. 

In the Seeding Stage, EnStore will use REopt to calculate preliminary sizes for the stationary battery system 
and PV system (unless these sizes are fixed and known in advance for a particular application). The REopt-
generated system sizes will be considered preliminary because REopt uses a mixed-integer linear programming 
(MILP) approach to calculate an absolute minimum value for cost optimization problems, and the MILP 
approach requires simplified, linearized models. This stage also omits physical details that can affect the 
accuracy of electrical and thermal load profiles and storage system performance. However, these 
simplifications can be useful at this stage for enabling relatively rapid calculation of preliminary system sizes, 
which can then be permutated and explored with more detailed models in the next stage of simulation. 

The Exploration Stage will use higher-fidelity, physics-based models of load, generation, and storage systems 
to increase the accuracy of electrical power and heat transfer calculations. At this stage, EnStore will use 
OpenStudio, EnergyPlus, and SAM to examine how inclusion of more detailed component performance 
characteristics and system interactions can affect design optimization results. EnergyPlus will enable the team 
to capture a variety of critical electrical and thermal system interactions, such as the interactions between TES 
systems, space conditioning systems, internal gains (e.g., occupants, lighting, plug loads, process loads), 



 

  

 

   
  

 
 

 
  

 
     

     
  

 
 
 

 
    

 
 

  

 
 

    
 

  
  

    
  

 
 

 
   

  
   

 

FY 2020 Quarter 1 Report 

internal mass objects, construction elements, exterior conditions, operational schedules, and control systems. 
OpenStudio will make it easier to modify EnergyPlus models in a replicable manner. SAM will enable the 
team to compare solutions for stationary battery designs with different component-level characteristics, such as 
voltage vs. depth-of-discharge curves, temperature dependencies, calendar life models, and cycle life models. 
It will also allow exploration and permutation of system-level inputs, such as battery replacement conditions 
and dispatch algorithms. To enable co-simulation and supervisory control of key component models, 
EnergyPlus will call the SAM battery model at each simulation timestep via an EnergyPlus feature called 
Python EMS and a SAM Python module called PySAM. 

For any given application of EnStore, user inputs will determine the number of REopt simulations required in 
the Seeding Stage as well as the number of OpenStudio/EnergyPlus/SAM simulations required in the 
Exploration Stage. The required number of REopt simulations will depend on the number of unique sets of 
REopt inputs included in a particular application. For example, if a particular case study includes two different 
EVSE profiles and all other inputs are fixed, the study will require two REopt simulations in the Seeding 
Stage. 

In the Exploration Stage, EnStore will typically translate each REopt result into multiple 
OpenStudio/EnergyPlus/SAM simulations that will be used for parametric analysis. The total number of 
OpenStudio/EnergyPlus/SAM simulations will depend on the number of variable parameters that were selected 
by the user for a given application. In addition to a user-specified number of system size permutations, other 
variable parameters may include cost assumptions, energy storage component properties, building 
characteristics, control assumptions, and other inputs to Exploration Stage models. 

Once the simulations are complete, EnStore will execute the Reporting Stage. At this point, EnStore will save 
select output files from previous stages and calculate additional output values. Time-series outputs will include 
power (kW) from grid to battery, grid to building, grid to EV charging station, solar PV to grid, solar PV to 
battery, etc. These values will be used alongside capital and operations and maintenance (O&M) costs in the 
PySAM UtilityRate5 and CashLoan modules to compute LCOC and/or net present value (NPV). These 
financial calculations utilize standardized methodologies known as discounted cash flow rate of return 
(DCFROR); further information on the approach can be found in most engineering and finance textbooks, with 
a good overview provided in Short, et al (1995). 

Finally, in the Post-Processing Stage, the team will compare simulation results to identify the case with the 
lowest LCOC and/or NPV for a given study. The team may use additional scripts to further synthesize and 
analyze results to answer more specific research questions for the BTMS Analysis project. A more detailed 
process flow diagram for pre-processing, EnStore, and post-processing is shown in Figure 3. 



 

   

 

  
  

 

 
 

 

    

    
  

   

 
 

   

   
 

  
 

Figure 3. Draft model architecture details, including data exchanged between tools and stages 

EnStore Model Inputs and Outputs 
Certain categories of data are necessary to run EnStore. These include component system costs (e.g., battery 
installed cost per kW), utility rate tariff information, baseline building models, building load time-series 
profiles, EVSE load time-series profiles, and weather information (e.g., an .epw file). 

These inputs collectively include data that are either required for specific tools used within EnStore (e.g., 
REopt, SAM, OpenStudio/EnergyPlus) or required for higher-level EnStore operations. EnStore will pass 
specific inputs to constituent tools as required. 

EnStore Inputs and Outputs 

The inputs and outputs of the EnStore simulation platform can be seen in Table 1 and Table 2. 

o Table 1. Main Input Categories for EnStore 
Input Category Description 

System Costs Solar PV installed cost per kW, solar PV O&M cost 
per kW, battery installed cost per kW, battery 

installed cost per kWh, TES cost, EVSE capital and 
O&M costs, interconnection cost 

Electric Utility Rate Tariffs URDB label or custom rate tariff information 

Net Metering Assumptions Presence/absence of net metering; net metering 
rules if applicable 

Building Loads Baseline building model and load profile generated 
by OpenStudio in pre-processing for select building 
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types, including retail big-box grocery store, 
commerical office building, fleet vehicle depot and 

operations facility, multifamily residential, and 
standalone EV charging station 

EVSE Loads Generated using EVI-Pro and DCFC Model with 
various demand scenarios 

Weather Data Typical Meteorological Year (TMY) (NSRDB) or 
Actual Meterological Year (AMY) data, saved in 

standard EnergyPlus format (.epw file) 

Financial Information Discount rate, tax incentives, etc. 

Component-level Details For stationary battery: battery chemistry, 
configuration, performance specifications, and 

control parameters, including max. and min. 
allowable SOC; 

For TES: TES type, configuration, and performance 
specifications; 

For solar PV: PV type, configuration, and 
performance specifications 

Dispatch Control Logic Supervisory dispatch control logic for dispatching 
stationary battery and TES 

Power Electronics and Balance of Plant (BOP) For example, AC-coupled system vs. DC-coupled 
Information system 

Ownership Model Whether system owner has purchased all 
technology assets (solar PV, stationary battery, TES, 

EVSE) or a subset of these 

Stationary Battery Conditioning Cooling/heating system assumptions, whether 
battery is placed inside or outside the building 

Analysis Period For example, 1 year vs. 20 years 

o Table 2. Main Output Categories for EnStore 
Output Category Description 

Financial Metrics LCOC and NPV 

Technology System Sizes Solar PV kW, stationary battery kW and kWh, TES 
size 

Time-series Data Solar PV production, stationary battery 
charge/discharge rates; power from solar PV to grid, 
solar PV to EVSE, stationary battery to EVSE, grid to 

building, grid to EVSE, etc.; other system and 
subsystem loads and conditions 

Inputs and Outputs for Other Tools in the BTMS Analysis Workflow 

Generating Electric Vehicle Load Profiles 



 

  
  

   
  

 
  

  
  

  

    
  

  

 
 

  
   

      
  

  
  

  
 

  
  

   

  
 

 

    
  

  
 

 

   

   
  

  
   

 

The team is using two models to generate EVSE load profiles: EVI-Pro and the DCFC model. EVI-Pro was 
developed by NREL in partnership with the California Energy Commission (CEC), and the DCFC model was 
developed by NREL and the University of Alabama (Ucer et al. 2018), with additional development in the 
preceding FY19 BTMS Analysis project in the first quarter of this FY20 project. 

EVI-Pro utilizes EV market and real-world travel data to estimate future requirements for home, workplace, 
and public charging infrastructure. The team will use EVI-Pro simulation results to determine probability 
distribution functions for EV arrival time and initial state of charge (SOC). These can be adjusted for different 
applications, such as an EV fast charge station, a big-box retail grocery store, office buildings, and a 
multifamily residential building. 

The DCFC model will use data generated from EVI-Pro as well as other data collected for the BTMS Analysis 
project. In the DCFC model, Monte Carlo simulations are carried out to predict the charging load and queuing 
time at a station. As explained by Ucer et al., “[during] each run, vehicle related parameters such as time of 
arrival, energy demand, initial SOC, etc. are randomly regenerated from the associated probability density 
functions (PDFs) [from EVI-Pro]. During the simulations, vehicles arrive at the corresponding stations, wait in 
the queue (if there is not any available port), are plugged in, and [are] then charged according to their charge 
acceptance curves. They depart after their energy demand is met, and a new vehicle from the queue is plugged 
into an available port.” Inputs and outputs for the DCFC model are shown in Table 3 and Table 4. 

o Table 3. Main Input Categories for DCFC Model 
Input Category Description 

Probability Distribution Functions Probability distribution functions for arrival time and 
initial SOC, initial SOC tied to kWh charged 

Vehicle Battery Sizes Battery sizes and ratio of battery sizes of vehicles 
charging at station (kWh) 

Station Information Station port capacity (kW) and number of ports at 
the station 

Charging Event Frequency Number of events per station per day 

Battery Acceptance Curve Inputs Battery chemistry needed to generate battery 
acceptance curve 

o Table 4. Main Output Category for DCFC Model 
Output Category Description 

EVSE Load Profile Minute kW time-series load profile for single EV 
station for 28 days, post-processed for one year 

Inputs and Outputs for REopt 

As previously discussed, in the Seeding Stage of the EnStore workflow, the team will use REopt to calculate 
preliminary solar PV and stationary battery sizes using simplified, linearized models. The system sizes will be 
permutated later with more detailed models. Inputs and outputs required for using REopt in the EnStore 
workflow are summarized in Table 5 and Table 6. . 
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o Table 5. Main Input Categories for REopt 
Input Category Description 

Location Latitude and longitude (REopt uses these to 
determine solar generation) 

Electric Utility Rate Tariff Information URDB label or custom rate tariff information 

Cost Information Solar PV installed cost per kW and O&M cost per 
kW; stationary battery installed cost per kW and 
installed cost per kWh; EVSE capital and O&M 

costs; interconnection cost 

Detailed Component Information Solar PV degradation percentage and existing kW; 
stationary battery replacement year, internal 

efficiency percentage, inverter efficiency 
percentage, inverter replacement year, max. kW, 
min. kW, initial SOC percentage, and min. SOC 

percentage 

Load Profile Aggregated building + EVSE load profile 

Default Values See REopt API documentation for details 

o Table 6. Main Output Category for REopt 
Output Category Description 

Preliminary system sizes Solar PV size (kW), stationary battery size (kW and 
kWh) 

Inputs and Outputs for EnergyPlus and OpenStudio 

EnergyPlus is a whole-building energy simulation engine, and OpenStudio is a suite of complementary tools 
that can expand EnergyPlus capabilities. As previously discussed, these tools will be used in both the Pre-
Processing Stage and the Exploration Stage. Inputs and outputs required for using EnergyPlus and OpenStudio 
in the EnStore workflow are summarized in Table 7 and Table 8. 

o Table 7. Main Input Categories for EnergyPlus and OpenStudio 
Input Category Description 

Baseline Building Model Baseline building model (.idf or .osm file) with no 
solar PV, stationary battery, or TES. A different 

baseline building model will be created for each of 
the building types included in this project (retail big-
box grocery store, commercial office building, fleet 
vehicle depot and operations facility, multi-family 

residential, and EV charging station) 

Weather Data Standard EnergyPlus format (.epw file) 

Measures In this context, “measures” are scripts for modifying 
building models in a replicable manner. EnStore 

inputs will include measures to add solar PV, 

https://developer.nrel.gov/docs/energy-optimization/reopt-v1/


 

 
 

    

 
  

 
 

   
 

 

      
  

 
  

  
  
   
  
  
    
  
  
 

 
  

 
   
  
  
  
  

 
 

  

  
  

  
  

    
  

   
  
  

 

stationary battery, and TES systems of various 
sizes. 

Content for Python EMS Depending on the application, examples may 
include: supervisory control logic for dispatching 

multiple energy storage systems; custom 
component models for novel TES technologies that 
differ from native EnergyPlus TES options; code for 

generating custom output variables. 

Default Values See the EnergyPlus Input Output Reference 
document for details 

o Table 8. Main Output Category for EnergyPlus and OpenStudio 
Output Category Description 

Time-series Data Various time-series data will be used for post-
processing, including the following: 

- Electrical power from: 
o Grid to stationary battery 
o Grid to EV charging station 
o Grid to building 
o Solar PV to grid (if applicable) 
o Solar PV to building 
o Solar PV to EV charging station 
o Stationary battery to building 
o Stationary battery to EV charging 

station 
o Stationary battery to grid (if 

applicable) 
- Electrical input to TES systems 
- Thermal input to TES systems 
- Thermal output from TES systems 
- System losses 
- Other system and subystem loads and 

conditions 

Inputs and Outputs for the SAM StandAloneBattery Module 

The SAM StandAloneBattery module is a detailed battery storage model that has detailed lifetime and 
degradation parameters, developed from work by Dey, et al. (March 2020). The SAM battery model will be 
instantiated within EnergyPlus to model battery capacity, output, losses, and life more accurately than would 
be possible with default EnergyPlus battery models. 

o Table 9. Main Input Categories for SAM Battery Module 
Input Category Description 

Stationary Battery Characteristics - Battery size (kW and kWh) 
- Battery chemistry 
- Battery performance curves (e.g. voltage vs. 

depth-of-discharge curve) 

https://energyplus.net/sites/all/modules/custom/nrel_custom/pdfs/pdfs_v9.2.0/InputOutputReference.pdf
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- Battery control parameters (e.g. max./min. 
allowable SOC) 

- Battery replacement assumptions (e.g., replace 
when capacity drops to 80% of original 
capacity) 

Default Values See PySAM Battery documentation for details 

o Table 10. Main Output Category for SAM Battery Module 
Output Category Description 

Time-series Data Various time-series data will be used for post-
processing, including the following: 

- Battery SOC 
- Battery kW charging/discharging rates 
- Battery temperature 
- Battery capacity fade 

Inputs and Outputs for the SAM UtilityRate5 Module 

UtilityRate5 PySAM module is a retail electricity bill calculator that uses the URDB and can apply net 
metering rules to determine monthly and annual electricity bills. 

o Table 11. Main Input Categories for SAM UtilityRate5 Module 
Input Category Description 

Time-series Data - Electricity received from the grid 
- Exported surplus solar generation (for net 

metering) 

Net Metering Assumptions Presence/absence of net metering; net metering 
rules if applicable 

Default Values See PySAM Utilityrate5 documentation for details 

o Table 12. Main Output Category for SAM UtilityRate5 Module 
Output Category Description 

Electricity Bill Monthly electricity bill 

Inputs and Outputs for the SAM Cashloan Module 

The Cashloan PySAM module is a financial model for residential and commercial behind-the-meter projects. 

o Table 13. Main Input Categories for SAM Cashloan Module 
Input Category Description 

Monthly Electricity Bill From UtilityRate5 Module 

Costs Aggregated capital costs, aggregated additional 
O&M costs 

https://nrel-pysam.readthedocs.io/en/latest/modules/StandAloneBattery.html
https://nrel-pysam.readthedocs.io/en/latest/modules/Utilityrate5.html


 

  

    

 

      
  

   

 

 
  

 
   

   
    

 
   

 
 

 
  

 
 

   

   
 

  

    
  

 

  
 

 
 

   
   

  
 

   
  

  

Financial Information Discount rate 

Default Values See PySAM Cashloan documentation for details 

o Table 14. Main Output Category for SAM Cashloan Module 
Output Category Description 

NPV Will be used to compute LCOC 

Related Upgrades to Existing Modeling Tools 
The BTMS Analysis team has engaged the development teams of related tools to understand their existing 
features and identify opportunities to leverage new features that will be completed soon enough to benefit this 
project. In particular, two upcoming features will be highly beneficial to the EnStore workflow: 

• Python EMS is a new feature under development by the EnergyPlus team. In the EnStore workflow, 
Python EMS will facilitate development of custom component models and act as a communication 
bridge between EnergyPlus and PySAM. An early prototype of Python EMS is estimated to be 
available for internal testing by the BTMS Analysis team in the next quarter with development 
continuing in 2020. 

• The SAM team is in the process of upgrading the PySAM battery module to enable Python EMS to 
call the SAM battery model at each simulation timestep. This is expected to improve transfer of 
battery state information between EnergyPlus and SAM models. An early version of this functionality 
is estimated to be available for internal testing by the BTMS Analysis team later in 2020. 

Additionally, the BTMS Analysis team is coordinating with other personnel who are engaged in laboratory 
characterization of batteries for stationary applications. Staff will discuss how new laboratory data might 
inform the methods that will be applied by the BTMS Analysis team to model stationary battery variations 
later in this project. The team will revisit related inputs and modeling methods as more information becomes 
available. 

Conclusions 
The team has identified key sets of inputs and outputs that will be required to execute analyses with the 
EnStore multitool simulation platform. Input specifications are informed by requirements for EnStore-specific 
operations as well as requirements for constituent modeling tools, including REopt, SAM, OpenStudio, and 
EnergyPlus. Output specifications are informed by anticipated post-processing efforts that will be required to 
answer research questions for the BTMS Analysis project. In upcoming months, the team will continue 
developing code for the EnStore simulation platform. As more functionality is completed, the team will revisit 
the multitool architecture and revise input and output formats as needed to improve the workflow. 
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BTMS Testing 

Contributors: INL, SNL 

Background 
Life testing continues for a few selected commercial lithium-ion cell types, to probe their performance relative 
to early BMTS life goals. The status of this testing is presented and discussed, along with planned testing 
activities and procedure development. 

Results 

INL Testing 

Graphite/NMC622 cells reached EOL, having lost 25% of their BOL capacity after 952 0.5C/0.5C full-depth 
cycles at 30°C, shown in figure 1.  NMC622 cathodes have been shown in literature to trade cycling stability 
for energy density, and these commercial cells seem to be no exception: previous Graphite/NMC cells with 
lower Ni content have reached 5,000 cycles before EOL, though at slightly lower rates. Accordingly, the cycle 
life performance of these cells, as a benchmark for high-energy-density EV cells, should not be used to judge 
the cycle-life capability of graphite anodes in other systems. Another cell of the same type was cycled 
shallowly, and lost capacity at a similar rate, on an energy throughput basis, until 15% of its BOL capacity had 
faded. After that point, the shallowly cycled cell showed a decreased capacity loss rate as shown in figure 2. 

Figure 1. Graphite/NMC622 0.5C/05C cycle life capacity at 30°C 
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Figure 2. Graphite/NMC622 0.5C/05C full-depth and shallow cycle life capacity loss at 30°C 

LTO/NMC cells optimized for long cycle life, but having a significantly lower specific energy, continue cycle 
and calendar aging using accelerating conditions with very little capacity loss observed, as shown in figure 3. 
Manufacturer literature on these cells suggests 80% capacity retention after 60,000 1C/1C cycles at 30°C, and 
extrapolation of the latest reference capacity loss points from the most accelerated aging condition, while not a 
prediction having any certainty, suggests that it is plausible these cells could cycle past the BTMS goal of 
20,000 cycles, even at elevated temperature and rate, as shown in figure 4. Visual observation of these cells 
shows no excessive gassing to-date. 

Figure 3. LTO/NMC 1C/6C full-depth cycle life capacity loss at 10, 30, and 45°C 



 

 

 

 

 
 

 
   

 
 
 

  

 

Figure 4. Extrapolation of RPT5 to RPT6 fade rate for LTO/NMC cells cycled at 1C/6C at 45°C 

SNL Testing 

Two different cell constructions are currently being investigated for the LFP/Graphite system.  In some cases, 
the cells reached the target 1000 cycles and in other conditions they are close to 1000 cycles.  The effects of 
this cycling on the capacity fade of the cells can be observed in figure 5. 

Figure 5. LFP/Graphite Cycling results 
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Results show that on average the power cells have lost ~13% while the energy cells have lost close to ~50% in 
the worst case.  It is difficult to say of the ~50% loss in the energy cell is representative without additional 
cells to provide statistics.  These results suggest that if similar decay rates persist, the cells cannot meet the 
10000-cycle target as they will have run out of usable capacity.  Differences in the state of health testing of 
these cells can also be observed as demonstrated in figure 6. 

Figure 6: Power Cell 1 State of Health Testing of LFP/Graphite Cells 

HPPC results show that as the cell continues to cycle, it loses its ability to deliver power at low states of charge 
which suggest that these cells will fail to meet the power demand required at end of life before the 10000-cycle 
target lifetime.  The differential capacity results suggest that the loss of performance is most likely attributed to 
changes in the graphite anode with some contributions from cathode losses.  This is a known problem.  
Graphite is known to degrade from extensive cycling. 

Upcoming Testing 

Orders have been placed for Toshiba LTO/LMO cells, and ZAF Ni Zn cells. The LTO/LMO is advertised to 
have very long cycle life, and the nickel zinc cells are touted as low cost and extremely recyclable, though 
cycle life is not expected to approach the BTMS goal. Both types of cells are critical material free. 

Performance Testing Protocol Development 

The initial testing protocols developed and reported on were designed to test the fundamental limits of the 
available commercial chemistries, and to better understand the aging mechanisms present in these chemistries. 
With a good understanding of the limitations of the available chemistries, a new series of testing protocols are 
being developed to mimic potential use cases of a BTMS application.  For these test protocols the “gas station” 
model was considered in which the BTMS system would supply the energy needed to charge EV without 
assistance from the grid and be charged by the grid during off-peak hours.  In this use case the BTMS system 
would need to support 4 events of 350kW EV charges (BTMS discharge) throughout the day. A 12 hour cycle 
as opposed to a 24 was chosen to double the amount of cycles per day and keep the charge rates low enough to 
ensure no accelerated aging mechanisms were enabled. Three different scenarios were considered. The first 
entailed 4 XFC events spaced evenly throughout the day, the second had two XFC events back to back at the 
beginning and end of the day, the third had an XFC event at the beginning and end of the day with two back to 
back EV charging events in the middle of the day.  These test scenarios are outline below in figure 7. 



 

  

 
    

  
  

  

Figure 7. Test protocols mimicking potential use cases of BTMS powering an XFC station 

Summary 
Aging continues on commercial cells that began early in the program, not meeting the critical material free 
goal. New critical material free commercial cells are planned for testing and evaluation to serve as a 
benchmark for thick electrode, critical material free cells being designed specifically for BTMS applications. 
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Physics-based Machine Learning for Behind the Meter Storage 

Idaho National Laboratory and National Renewable Energy Laboratory 
Eric Dufek, Kandler Smith, Ross Kunz 

Background 
The development and deployment of batteries in new, diverse applications requires both that the batteries 
function in the necessary environment as well as a deep understanding of their performance, life and expected 
failure mechanisms.  In the past the primary means to advance knowledge on performance and life was to test 
batteries for extended periods of time under a range of different scenarios. Testing of batteries in this manner 
can take upwards of a year to make reasonable estimations of life and to clearly identify failure modes and 
rates. The need to shorten the design and testing cycle if critical to bringing new battery chemistries and cell 
designs into emerging applications such as in stationary energy storage to support electric vehicle charging 
stations capable of extreme fast charging. Connection of physics-based life models and machine learning (ML) 
provides the opportunity to enable more robust assessment of battery aging, failure mechanism identification 
and understanding as new use case scenarios are proposed. The current project is focused on means to apply 
ML to enhance the estimation of life while also identifying key failure pathways. During the first portion of the 
project existing data sets will be used for both training and validation of ML approaches to better characterize 
expected battery life. The work also looks to link ML with existing physics-based life models at INL and 
NREL. 

Results 
Kokam Aging Analysis 
The project objective is to reduce the time, cost and number of experiments needed to accurately quantify 
battery lifetime, supported by physics-based lifetime models and machine learning. A numerical description of 
model uncertainty is needed to support optimization of aging techniques for improved model accuracy with 
less test data. 
In this quarter, the bootstrap resampling method was applied to quantify the uncertainty in NREL’s battery life 
model. Bootstrap resampling simply generates new datasets by randomly resampling, with replacement, from 
the original dataset. Life model parameters can then be refit on the bootstrapped datasets to determine their 
uncertainty. A simple schematic demonstrating the bootstrap resampling technique is shown below: 

Original dataset: Resampled datasets (with replacement): 

→ 

The dataset used for initial development of the bootstrap resampling technique is composed of cell testing 
results from eleven Kokam graphite/NMC 75-Ah lithium-ion batteries which were tested at varying 
temperatures, average states of charge, and cycling conditions [1]. These test results are then fit with reduced-
order physics-based capacity fade and resistance growth models, accounting for several degradation pathways 
visible in the dataset. A table detailing the testing parameters and a figure showing the testing data and the 
fitted capacity fade model are shown in Table 1 and Figure 1, respectively. 
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Table 15: Aging tests for Kokam 75-Ah cells [1]. Figure 4: Kokam capacity fade model, incorporating 
positive electrode degradation, negative electrode 

degradation, and lithium loss mechanisms [1]. 

After bootstrap resampling to generate new datasets, the parameters of the capacity fade model are then 
individually refit on each dataset. Examples of parameters include the activation energy for lithium loss during 
storage, as modeled by an Arrhenius relationship, or the lithium-inventory capacity loss per cycle (at a 
reference temperature of 25°C), which is assumed to be linear. In total, there are 19 parameters in the Kokam 
capacity fade model. The goal of bootstrap resampling is to determine both the sensitivity of the capacity fade 
model to individual parameters as well as the distribution of parameters values across the resampled datasets. 
The parameter distributions can be later used to generate random parameter values, enabling a Monte-Carlo 
approach for quantifying lifetime-predictive uncertainty. 
A simple way to quantify the sensitivity of the capacity fade model to each parameter is to observe the 
distribution of the overall fit quality across the resampled dataset for each parameter. This is shown in Figure 2 
for parameters refit on 100 bootstrapped datasets. Fit quality is quantified by ‘r2 adjusted’. For reference, the r2 

adj. value of the overall capacity fade model is about 0.985. The 95% confidence interval of r2 adj. for most 
parameters is similar, implying that the capacity fade model is not dominated by any one parameter. The mean 
r2 adj. for some parameters appears slightly higher than the ‘true’ value of 0.985, suggesting that these 
parameter values could be better optimized. 
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Figure 5: Variation of overall capacity fade model fit quality when parameters are refit over 100 bootstrapped datasets. 

The effect of the number of bootstrapped samples on fit quality when refitting parameters is shown in Figure 3. 
The behavior is straightforward to explain; as the number bootstrapped datasets increase, the distribution of 
each parameter approaches its ‘true’ distribution, and the uncertainty value of each parameter will stabilize. 
Note that the total possible number of randomly resampled datasets is equal to 𝑁𝑁!, where 𝑁𝑁 is the number of 
data points, but far fewer than 𝑁𝑁! bootstrap samples need to be recorded before the uncertainty estimate 
stabilizes. Even at 100 samples, the mean fit quality is approaching the ‘true’ value of 0.985  for all 
parameters. 

Figure 6: Variation of overall capacity fade model fit when parameters are refit over 10, 25, and 100 bootstrapped 
datasets. 

The distributions of some of the bootstrapped parameter values are shown in Figure 4, as well as their mean, 
standard deviations, and estimated distribution. However, note that not all parameters appear to be normally 
distributed - some parameters are almost continuously distributed across their range, while others are 
distributed very asymmetrically with a long tail. A better way to fit arbitrary distributions is with the Kernel 
distribution, which are shown in Figure 5. Instead of fitting the mean of each parameter, the most probable 
value can be fit – if the distribution of the parameter is normal, these will be exactly equal. For distributions 
that are not well fit by a normal distribution, the most probable value is still similar to the mean from the 
normal distribution, but parameter values away from the mean are described more accurately. This is critically 
important for later Monte-Carlo simulations, where parameter values will be randomly drawn from these 
distributions. 



 

 

    
 

 

   
 

 
  

 
 

 

   
 

  

Figure 7: Example parameter distributions from bootstrap resampling 100 times. Distributions are fit assuming a gaussian 
distribution. 

Figure 8: Example parameter distributions from bootstrap resampling 100 times. Distributions are fit assuming a Kernel 
distribution. 

The capacity fade model recalculated using the parameter means and parameter ‘most probable values’ are 
compared with the original capacity fade model in Figure 6 below. Both methods of parameter estimation work 
well, but the Kernel distribution approach fits slightly better. This can clearly be seen by examining the 0°C 
cell data and predictions. 

Figure 9: Optimized capacity fade model compared with capacity fade models calculated using parameter values from 
100x bootstrapped parameter distributions. 

The kernel distributions of each parameter can also be used to generate random parameter values for running 
Monte-Carlo simulations of the capacity fade model. These Monte-Carlo simulations can then be used to 
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create confidence intervals around the life model prediction. Figure 7 and Figure 8 below show initial results 
of this approach, using parameter distributions calculated by bootstrap resampling 1250 times, generating 300 
sets of randomly sampled parameter values from these distributions, and then calculating the 95% confidence 
interval from the resulting capacity fade models. In Figures 7 and 8, the ‘best fit’ line is the original capacity 
fade model, and the ‘updated params’ line is the capacity fade model using the most probable parameter values 
from the bootstrap resampling stage. Figure 7 shows individual cells with different degradation patterns: the 
first cell shows degradation proportional to t1/2, the second cell shows negative electrode site loss leading to a 
rapid drop off of capacity, and the third cell shows substantial beginning-of-life positive electrode ‘break-in’, 
causing a capacity increase, followed by almost linear degradation. It can be clearly seen that the uncertainty of 
the capacity fade model changes based on which of these mechanisms is dominating cell capacity loss, 
demonstrating how each mechanism has its own inherent uncertainty. Figure 8 shows the uncertainty windows 
for all the cells. Uncertainty is clearly highest for the cells tested at 0°C and 55°C. 

Figure 10: Monte-Carlo simulation of the Kokam capacity fade model (individual cells plotted for comparison of degradation 
modes), calculated from 300 parameter sets that were randomly sampled from parameter distributions determined by 

bootstrap resampling 1250 times. 

Figure 11: Monte-Carlo simulation of the Kokam capacity fade model, calculated from 300 parameter sets that were 
randomly sampled from parameter distributions determined by bootstrap resampling 1250 times. 

These uncertainty windows can possibly be narrowed by changing the bootstrap resampling procedure to better 
reflect how the capacity fade model was actually fit to the data; the capacity fade model was originally built by 
selectively fitting specific degradation mechanisms to portions of the data that appear to behave by them (e.g., 
fitting the negative electrode site loss model to the 0°C cell data past 100 days, when cell capacity fade rate 
began to accelerate), while the bootstrap resampling procedure simply fits an individual parameter at a time 
across the entire data set. 

Leaf Aging Analysis 



 

 
   

 
 

 

    
   

    
 

  
  

 
     

   
 

  
   

In a continuation of activities which occurred to close FY19 the team further analyzed previously collected 
data related to aging of Nissan Leaf Cells [2]. When initially performed the aging data clearly identified aging 
trends using standard performance analysis methods, but the full analysis treated each condition as the average 
of multiple cells to draw general trends associated with different fast charging conditions as shown in Figure 9. 

Figure 9: Capacity fade trades as a function of energy throughput for Nissan Leaf cells tested using a scaled AC level 2 or a 
DC Fast Charge charge profile. Data from Tanim et al [2]. 

Using the data in Figure 9 plus additional data that was not included in previous analysis which included 
combined AC Level 2 and DCFC in the same aging profile analysis was expanded using the ML architecture 
developed in Q1. The analysis was focused on two primary areas. First, using the data collected during both 
the charge and the discharge, the ability to accurately predict performance at a specified point in future time. 
The second focus area was on identifying and understanding variations within the original data points. Using 
time series outlier detection, outliers were identified from across the cycling domain for each of the cells as 
previously described. The data was then analyzed to look for clusters of cell performance and a cluster 
dendrogram was developed to group cells by similar performance as shown in Figure 10. As can be seen, the 
cell performance can be effectively clustered based on capacity fade. Using this input the earlier methods were 
refined to predict performance at RPT 9 (after 900 cycles). The initial prediction discussed in FY19 had an 
error of just over 1% when using the first 5 cycles of data. Following the time series dimension reduction this 
reduced to below 0.3% while also seeing a RMSE reduction to below 0.1. 
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Figure 10: Cluster dendrogram showing similar performance of cells after the applications of time series outlier detection. 

Project logistics and future aging studies 

The team also developed future plans inline with the Q1 milestone for FY20 on a full design of experiment to 
support additional ML advancement. The DOE includes both cycle and calendar aging conditions for three 
state of charge conditions and three different temperatures. To facilitate additional conditions a reduced order 
design was adopted. The complete design includes a total of ~70 cells. Upon finalizing the design commercial 
off the shelf cells were procured to enable the start of testing during Q2 of FY20. 

The team also worked to further enable data sharing and analysis through developing a plan to enable the use 
of shared software that will enable analysis and script development. 

Conclusions  
The  team further developed ML methods during Q1. Bootstrap resampling of parameters combined with 
Monte-Carlo simulations of battery capacity fade has been initially demonstrated as a method for quantifying 
the uncertainty of NREL’s battery capacity fade model. The bootstrap resampling procedure can be further 
improved to reduce the model uncertainty. Future work will extend the capacity fade model uncertainty 
quantification to simulations, and work to improve the resampling procedure to better reflect the original 
model fitting procedure. Robust analysis of outliers also showed distinct promise in reducing prediction error 
at defined locations for multiple charging and use protocols. A refined design of experiment was developed for 
future analysis needs and cells were procured to enable activities in Q2 and beyond. 

References 
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BTMS Materials Development 

Yeyoung Ha, Sang-Don Han, Kyusung Park (NREL), Andrew Jansen (ANL) 

Background 
To meet the unique requirements for the Behind-the-Meter Storage (BTMS) systems – batteries capable of 
discharging at high power and charging at standard lower power rates, acting as a power reservoir to bridge to 
the grid and other on-site energy generation technologies – we are focusing on developing battery technologies 
with long cycle life (at least 8,000 cycles) and critical-material-free (e.g. Co-free cathodes) for stationary 
applications.  Li4Ti5O12 (LTO), which offers excellent safety and long cycle life as it operates around 1.55 V 
(vs. Li/Li+) (eliminating potential Li dendrite formation) and exhibits minimal volume changes during lithium 
insertion/extraction,1 is chosen as the anode and Mn-based cathodes (LiMn2O4, LiNi0.5Mn1.5O4, and Li2MnO3-
LiMO2) are chosen as Co-free cathodes to be examined. While there have been reports on the LTO anode and 
Mn-based cathode cells in different electrolyte systems,2 the studies were not targeted for the BTMS purpose. 
Thus, with the selected electrodes, we performed thorough examination of a variety of electrolytes focusing on 
their anodic (corrosion) stability and cycling performance at 45°C.  

Results 
To screen the liquid electrolytes for Mn-based cathodes (LiMn2O4, LiNi0.5Mn1.5O4, and Li2MnO3-LiMO2) and 
LTO anode chemistry, first we surveyed the literature and narrowed down Li salt and solvent candidates listed 
in Figure 1.  Salts were chosen based on the following properties: (1) Lithium hexafluorophosphate (LiPF6) 
and Lithium tetrafluoroborate (LiBF4), which are known to successfully passivate Al current collector through 
the formation of AlF3; (2) Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Lithium 
bis(fluorosulfonyl)imide (LiFSI), imide-based salts which exhibit good thermal stability and are less sensitive 
to moisture; and (3) Lithium trifluoromethanesulfonate (LiTf), Lithium acetate (LiOAc), and Lithium 
trifluoroacetate (LiOTFAc), lithium salts based on the conjugate bases of the acids.3-4 Solvents were chosen 
based on the following properties: (1) Propylene carbonate (PC), which exhibits wide liquid range and high 
dielectric constant; (2) Fluoroethylene carbonate (FEC), another cyclic carbonate which may participate in the 
formation of beneficial solid-electrolyte interface (SEI) via incorporation of fluorine; and (3) Acetonitrile 
(ACN), Ethyl methyl sulfone (EMS), and Tetramethylene sulfone (TMS), which have been reported to have 
good anodic stability.5-6 Mono-salt and -solvent combinations of these salts and solvents (1 M concentration) 
were examined.  

Figure 12.  List of salts (Lithium hexafluorophosphate (LiPF6), Lithium tetrafluoroborate (LiBF4), Lithium 
bis(trifluoromethanesulfonyl)imide (LiTFSI), Lithium bis(fluorosulfonyl)imide (LiFSI), Lithium trifluoromethanesulfonate 

(LiTf), Lithium acetate (LiOAc), and Lithium trifluoroacetate (LiOTFAc)) and solvents (Propylene carbonate (PC), 
Fluoroethylene carbonate (FEC), Acetonitrile (ACN), Ethyl methyl sulfone (EMS), and Tetramethylene sulfone (TMS)) tested 

for the initial electrolyte screening. 
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Anodic stability test. As the initial screening process, the stability windows of electrolytes were tested in Al/Li 
coin cells using cyclic voltammetry because both the Mn-based cathodes and LTO anode use Al foil as the 
current collector.  The cells were cycled between 1 and 5 V (vs. Li/Li+) at 1 mV/s scan rate.  All experiments 
were performed at room temperature.  The second anodic (positive) scan for each electrolyte is presented in 
Figure 2.  A lower current indicates that the electrolyte can successfully passivate the Al surface during the 
first cycle.  The results for LiOAc are not shown as the salt did not dissolve in PC, FEC, and ACN, and 
showed chemical reactions with EMS and TMS and hence was not able to be tested. LiBF4 in EMS, and 
LiOTFAc in EMS and TMS also showed chemical reactions between the salt and the solvent.  Among the ones 
tested, LiPF6, LiBF4, and LiOTFAc exhibited a good anodic stability, indicating that using a fluorine-
containing salt is effective in passivating Al surface via formation of AlF3. With these salts, PC and FEC 
showed a better stability compared to ACN and sulfones.  On the other hand, all imide-based salts (LiTFSI, 
LiFSI, and LiTf) had narrow stability windows. 

Figure 13.  Electrochemical stability windows of electrolytes tested with Al/Li coin cells at room temperature. Al electrode was 
cycled between 1 and 5 V (vs. Li/Li+) at 1 mV/s scan rate.  The second anodic scan (1 V → 5 V) is presented as an indicative of 

determining the Al surface passivation. Electrolytes with LiBF4 in EMS and LiOTFAc in EMS and TMS showed chemical 
reactions and could not be tested. 

Half-cell test. Based on the anodic stability test results, three salts were selected to be examined in half-cells: 
LiPF6 and LiBF4, which showed good anodic stability; and LiTFSI, a representative of the imide-based salts 
which showed worse anodic stability than the other two salts.  All five solvent systems (15 electrolytes in total) 
were tested.  Three electrodes provided by CAMP Facility (LTO, LiMn2O4 (LMO), and LiNi0.5Mn1.5O4 

(LMNO)) were tested and their detailed information is given in Table 1.  The half-cells were cycled at C/10 for 
2 formation cycles and at 1C for 100 aging cycles.  1.0-2.5 V, 3.2-4.3 V, and 3.5-5.0 V cutoff voltages were 
used for LTO/Li, LMO/Li, and LMNO/Li cells, respectively.  All cells were tested at 45°C.  Surprisingly, the 
electrolytes showed the same trend in the cycle performance regardless of the electrodes tested (results not 
shown).  To verify the effect of Li metal on the half-cell performance, Li/Li symmetric cells were tested in 
selected electrolytes: LiBF4 and LiTFSI in PC and FEC.  The symmetric cells were cycled by applying 2 



 

  
   

 
 

 
    

   
  

  
 
 

   
  

 
 

   
   
  

 
 

   
   
   

 
 

   
   
  

 
 

 

         
      

     

mA/cm2 during 1 h half-cycle.  The current density and half-cycle time were chosen to match the areal 
capacity of the LTO/Li cells.  In Figure 3, the cycle performance of LTO/Li and Li/Li cells are presented. 
First, looking at the LTO/Li cell results, FEC-based electrolytes showed a better capacity retention than the 
PC-based electrolytes with both LiBF4 and LiTFSI salts.  In particular, a rapid capacity decay was observed in 
the LiBF4/PC electrolyte after ~20 cycles.  This trend in the cycle performance, LiBF4/PC << LiTFSI/PC < 
LiBF4/FEC < LiTFSI/FEC, is clearly observed in the Li/Li cells as well, where the overpotential dramatically 
increases around ~20th cycle in LiBF4/PC electrolyte, gradually increases in LiTFSI/PC, and remains relatively 
consistent in the FEC-based electrolytes.  The performance of Li/Li symmetric cells directly correlate with the 
half-cell performance, indicating that half-cells cannot be used to obtain meaningful electrolyte screening data.  

o Table-1: Electrodes Examined in this Report 
Specifics 

- 87 wt% Samsung Li4Ti5O12 + 5 wt% Timcal C45 + 8 wt% Kureha 9300 PVDF 
Li4Ti5O12 - Single side coating on 20 μm Al foil (LTO) 

- Coating thickness 102 μm; Porosity 55.6 %; Loading 14.20 mg/cm2; Density 1.38 g/cm3 

- 90 wt% Toda LiMn2O4 + 5 wt% Timcal C45 + 5 wt% Solvay 5130 PVDF 
LiMn2O4 - Single side coating on 20 μm Al foil (LMO) 

- Coating thickness 76 μm; Porosity 33.5 %; Loading 18.86 mg/cm2; Density 2.48 g/cm3 

- 84 wt% LiMn1.5Ni0.5O4 + 8 wt% Timcal C45 + 8 wt% Solvey 5130 PVDF 
LiNi0.5Mn1.5O4 - Single side coating on 20 μm Al foil (LMNO) 

- Coating thickness 62 μm; Porosity 33.8 %; Loading 14.88 mg/cm2; Density 2.40 g/cm3 

Figure 14.  Cycle performance of LTO/Li half cells and Li/Li symmetric cells with LiBF4 in PC and FEC, and LiTFSI in PC and 
FEC electrolytes. The half cells were cycled at C/10 for 2 formation cycles and at 1C for 100 aging cycles between 1.0 and 2.5 

V.  The symmetric cells were cycled by applying 2 mA/cm2 during 1 h half-cycle.  All cells were tested at 45°C. 
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Full-cell test. As the half-cells could not be utilized to test the electrolyte performance, electrolytes were 
tested with LTO/LMO and LTO/LMNO full cells.  LiPF6 and LiBF4 salts with PC and FEC solvent 
combinations were tested as these electrolytes showed reasonable results in both Al corrosion tests and half-
cell tests.  The full cells were cycled at C/10 for 2 formation cycles and at 1C for aging cycles.  1.5-3.0 V and 
1.5-3.5 V cutoff voltages were used for LTO/LMO and LTO/LMNO cells, respectively.  All cells were tested 
at 45°C. The cycle results are shown in Figure 4.  In full cells, PC-based electrolytes performed better than the 
FEC-based electrolytes with both cathodes, which is opposite from the half-cell results.  This result once again 
confirms that the half-cell result is mainly governed by the Li metal performance.  Since FEC can form a 
favorable, LiF-rich, solid-electrolyte interface (SEI) on the Li metal surface,7 it results in a better performance 
than PC that does not have fluorine.  Currently, up to ~200 cycles, LiBF4 in PC electrolyte is showing the best 
performance in the full cells. 

Figure 15.  Cycle performance of LTO/LMO and LTO/LMNO full-cells with LiPF6 and LiBF4 in PC and FEC electrolytes. Gen2 
electrolyte is shown as comparison. Cells were cycled at C/10 for 2 formation cycles and at 1C for aging cycles.  LTO/LMO 

cells were cycled between 1.5 and 3.0 V and LTO/LMNO cells were cycled between 1.5 and 3.5 V. 

Conclusions 
Li salt and solvent candidates with different chemical properties were chosen to be screened for LTO anode 
and Mn-based cathodes.  The anodic stability, half-cell performance, and full-cell performance of the selected 
electrolytes were characterized.  From the anodic stability (Al corrosion) tests, LiPF6 and LiBF4 showed wide 
electrochemical stability window due to the effective passivation of the Al surface, while imide-based salts 
exhibited narrow stability windows. Half-cell results were strongly affected by the Li metal performance, 
which was confirmed by Li/Li symmetric-cell tests.  Full-cell results showed the opposite trend from the half-
cell results, and the current full-cell results show the best performance with LiBF4 in PC electrolyte.  In the 
next quarter, the full cells will continue to be monitored. Moreover, LiFSI and LiOTFAc in PC and FEC 
combinations will be tested. Although these salts did not show great corrosion test results, the electrolytes will 
be tested with LTO/LMO cells to check their potentials.  Moreover, fluorinated solvents (2,2,2-trifluoroethyl 
methyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, and 3,3,3-trifluoropropylene carbonate) from ANL will 
be tested.  Finally, Ethylene carbonate (EC) and PC solvent combinations will be tested as it has been reported 
that the conductivity increases for both LiPF6 and LiBF4 salts as EC is mixed with PC.8 
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