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SUMMARY 
Security assessment is a fundamental function for both short-term and long-term power 
system operations. The data-driven security assessment (DSA) criteria will help determine 
when it is necessary to trigger a dynamic simulation. The DSA criteria will provide a key 
indicator of switching the simulation method. It will be the link between the traditional 
isolated dynamic simulation and scheduling simulation. 

This paper investigates a data-driven security assessment of electric power grids based on 
machine learning. Multivariate random forest regression is used as the machine learning 
algorithm because of its high robustness to the input data. Three stability issues are analyzed 
using the proposed machine learning tool: transient stability, frequency stability, and small-
signal stability. The estimation values from the machine learning tool are compared with 
those from dynamic simulations. Results show that the proposed machine learning tool can 
effectively predict the stability margins for the three stability metrics, i.e. transient stability, 
frequency stability and small-signal stability. 

KEYWORDS 
Data-driven security assessment (DSA), frequency stability, machine learning, multivariate 
random forest regression (MRFR), small-signal stability, transient stability.  
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1. INTRODUCTION 
In modern power systems, the penetration level of renewable generation is increasing [1], [2]. 
Renewable generators could become not only an energy producer but also a necessary provider of 
ancillary services at multiple timescales [3], [4]. Conventional methods to simulate power system 
operations—such as short-term transient studies and long-term production simulation—are not 
sufficient for studying the multi-timescale variation of renewable generation and its impact on system 
reliability. 

Security assessment is a fundamental function for both short-term and long-term power system 
operations [5]. The data-driven security assessment (DSA) criteria will help determine when it is 
necessary to trigger a dynamic simulation. The DSA criteria will provide a key indicator of switching 
the simulation method. It will be the link between the traditional isolated dynamic simulation and 
scheduling simulation. The stability margins associated with security assessments include small-signal 
stability, frequency stability, and transient stability. 

Though previous studies [6]-[8] have used machine learning to predict stability, they usually used 
specific power flow solution parameters as input to a machine learning tool, such as voltage and angle 
at particular buses, power flow of individual branches, along with individual machine and load data. 
Because the model for simulation is supposed to integrate long-term scheduling with short-term 
dynamics, only scheduling data, or generator dispatch, is available as an input into the tool. 
Additionally, each of these past studies analyzed only a single stability issue, most often transient 
stability. 

The machine learning approach proposed in this paper analyzes three stability issues: transient, 
frequency, and small-signal stability. With the proposed DSA approach, the real-time computational 
burden from conducting dynamic simulations can be transferred to offline training of the machine 
learning algorithm, which provides a promising path for real-time applications. The developed 
machine learning tool can accurately predict the system stability margins and has high robustness to 
the input data. 

2. FRAMEWORK OF MACHINE LEARNING-BASED SYSTEM STABILITY 
ASSESSMENT 
Fig. 1 shows the detailed DSA flowchart based on the machine learning approach proposed in this 
paper. In general, the DSA process includes three steps: 

Obtain information of load dispatch

Extract informative features relevant to system 
stability metrics

Construct training data set based on informative 
features

Train multivariate random forest regression 
based on sub-data set 

Estimate system stability metrics by using the 
load dispatch

Step 1

Step 3

Step 2

.

 
Fig. 1. Flowchart of machine learning-based DSA. 

Step 1: Extract informative features relevant to the system stability metrics from the load dispatch. 
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Step 2: The extracted features are used to train the machine learning model to learn the underlying 
relationship between the informative features and the system stability metrics. The multivariate 
random forest regression (MRFR) algorithm is used for the machine learning tool in this paper. 

Step 3: The trained MRFR algorithm is further implemented to estimate the system stability metrics 
using the load dispatch. 

The MRFR is an ensemble of decision trees trained by bootstrap sampling and random feature 
selection. It aims to build a large collection of regression trees and average the output of each tree to 
reduce the variance of the prediction results and boost the performance of the final model. Fig. 2 
shows a diagram of the MRFR algorithm. Considering a training data set X = [X1, X2 … Xn] and the 
corresponding response Y = [Y1, Y2 … Yn], MRFR first uses a bootstrap to draw a set of samples 
with size m from the training data set. Then it establishes a regression Tree-i based on these 
bootstrapped data. The following steps are recursively repeated for each terminal node of the tree, 
until the minimum node size is attained. 

1) Randomly select D dimension features of each bootstrapped sample in the training data set.  

2) Split the parent node into two children nodes based on the information gain ratio criterion.  

This iterative procedure is repeated for k times, and the output of the forest is the average of the 
predictions from each regression tree, as shown in (1) 

 ( )
1

1ˆ ˆ
k

i
i

Y Y
k =

= Χ∑   (1) 

We use MRFR in this paper because of its ease of implementation, high robustness to the input data, 
and capability to avoid overfitting during the training process. In this paper, the input of the DSA 
machine learning tool is the dispatch data updated every 5 minutes. Its outputs are system stability 
metrics, including critical clearing time, frequency nadir, and damping ratio of oscillation modes. 
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Fig. 2. Diagram of multivariate random forest algorithm. 

3. DATA-DRIVEN SECURITY ASSESSMENT: CASE STUDY 
In this section, three system stability issues are performed with the proposed machine learning tool: 
transient stability, frequency stability, and small-signal stability. An 18-bus test system extracted from 
the case library of the PSLF simulation tool [9] is used to demonstrate the performance of the 
proposed machine learning tool. The single-line diagram of the 18-bus system is shown in Fig. 3, 
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which includes 18 buses, 24 branches, 5 generators (including 1 photovoltaic power plant), and 7 
loads. The dispatch load and generator data are given for every 5 minutes of the 24-hour period. 
Therefore, there are 288 cases in total. 
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Fig. 3. 18-bus test system. 

3.1 DATA-DRIVEN TRANSIENT STABILITY ASSESSMENT 
To predict the transient stability margin, a three-phase fault on a transmission line is applied in the 
system. Although the location of the fault is fixed during all simulations, the fault clearing time is 
varied. In this example, the fault is placed at the branch between North-01 (Bus 1) and North-02 (Bus 
2) in the 18-bus system. The same set of fault clearing times are tested at each time step, or every 5 
minutes of the 24-hour data period. At each 5-minute time step, the fault clearing time is adjusted from 
60 ms–720 ms in intervals of 20 ms. Therefore, 9,792 total test cases are created. Critical clearing time 
(CCT) is selected as the metric of transient stability. CCT is defined as the maximum time allowed to 
remove the disturbance without interrupting the system’s performance. The system is stable if the 
disturbance can be cleared before the time allowed. The purpose of adjusting the fault clearing time in 
small intervals is to create a sufficient number of stable and unstable cases to determine a more exact 
CCT. During each simulation, rotor angles of all machines are monitored. If the rotor angle deviation 
of any two generators exceeds 180 degrees, the case is considered unstable. 

The capability of the machine learning tool in predicting the transient stability margin is then validated 
by using the power flow solution. The input to the machine learning tool is individual real power 
output of all generators. During testing, the output is the transient stability margin prediction, which is 
determined by computing estimated fault clearing time as a function of dispatch. Among the 288 
cases, 200 cases are randomly selected for training, and the remaining cases are used for testing. Fig. 4 
compares the simulated CCT and estimated CCT from the test results of the machine learning tool. 
The errors of the two results are illustrated in Fig. 5. As shown in Fig. 5, the error of the CCT is less 
than 40 ms, which means that the proposed machine learning tool has very high accuracy. 
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Fig. 4. Simulation and estimation CCT in testing data set. 
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Fig. 5. CCT estimation error distribution. 

3.2 DATA-DRIVEN FREQUENCY STABILITY ASSESSMENT 
To predict the frequency stability, frequency nadir is selected as the metric. The contingency is 
selected by tripping the maximum amount of generation (70 MW) the system can handle while still 
converging. The inertia level is forced to be a percentage of the base inertia depending on total 
generation output. The purpose of adjusting the inertia at each generation level is to create a sufficient 
number of stable and unstable cases to train and test the machine learning tool. Though the total 
generation output over the 24-hour period does not change enough to alter unit commitment and 
dispatch by large amounts, the inertia is forced to change linearly, even with a smaller range of 
generation output variation. A linear function is created to correlate generator output and inertia level. 
The percentages range from 20% to 100% of the base inertia, corresponding to the minimum and 
maximum total generation output. 

For machine learning model development, stability is determined by examining the frequency nadir of 
each case. Real power dispatch of all generators is provided as the input to the machine learning tool. 
The frequency nadir is estimated, subjected to the generation trip. Similar to the transient stability 
assessment, 200 cases are randomly selected for training, and the rest of the 88 cases are for testing. 

The capability of the machine learning model in predicting the frequency stability margin is then 
validated by using the power flow solution. During testing, the input to the machine learning tool is 
the real power output of all machines. The output is frequency stability margin prediction, based on 
estimated frequency nadir. The results of the power flow simulation and machine learning estimation 
are compared and shown in Fig. 6. The distribution of the frequency nadir estimation errors is plotted 
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in Fig. 7. The figures show that the estimation error of the frequency nadir of the generators is less 
than 7 mHz. 
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Fig. 6. Simulation and estimation frequency nadir in testing data set. 
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Fig. 7. Frequency nadir estimation error distribution. 

3.3 DATA-DRIVEN SMALL-SIGNAL STABILITY ASSESSMENT 
The data-driven small-signal stability assessment is performed on the 18-bus system. Damping ratio is 
selected as the metric of small-signal stability. The damping ratio is a dimensionless measure 
describing how oscillations in power systems decay after a disturbance. Ideally, the system is stable if 
the damping ratio is positive and unstable if the damping ratio is negative. The oscillation mode with 
smallest damping ratio affect the system performance most, so the small-signal stability assessment 
mainly focuses on this mode. To train and test the model, a specific mode is selected at a time. For 
training, the damping ratio and generator dispatch at each 5-minute interval are provided as inputs to 
the model, with 200 of the 288 cases randomly selected to train. The rest of the cases are used to test 
the accuracy of the model. 

The results of the small-signal stability assessment are illustrated in Fig. 8 and Fig. 9. The oscillation 
frequency of this mode is 0.73 Hz, and the average damping ratio is 1.11%. As shown in Fig. 9, the 
damping ratio estimation error is less than 0.15%, which means that the machine learning estimated 
results agree well with the generated simulations. 
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Fig. 8. Simulation and estimation damping ratio in testing data set. 
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Fig. 9. Damping ratio estimation error distribution. 

4. CONCLUSION 
This paper proposed a unified machine learning approach for DSA of electric power grids. We used 
the MRFR algorithm for the machine learning tool because of its ease of implementation, high 
robustness to the input data, and capability to avoid overfitting during the training process. Three 
system stability metrics were performed on an 18-bus test system with the proposed machine learning 
tool, including critical clearing time, frequency nadir, and damping ratio of oscillation mode. The 
proposed DSA approach transferred the real-time computational burden from conducting dynamic 
simulations to offline training of the machine learning algorithm, thus providing a promising path for 
real-time applications. Results show that the developed machine learning tool can accurately predict 
the system stability margins and has high robustness to the input data. 
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