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Presentation Outline

• Issues and time frames of importance
• What are wind’s impacts, how are they 

measured?
• Principles of integration analysis 
• Emerging best practices
• Stakeholder best practices
• Recent high-penetration studies
• Insights and remaining issues
• Ongoing work 



Wind System Integration at NREL
• National Wind Technology Center
• Systems Integration Team
• Advising PUCs and the power industry as 

technical reviewers to integration studies
• Method development



Problem Introduction
• Reliable power system 

operation requires balance 
between load and generation 
within acceptable statistical 
limits

• Output of wind plants cannot be 
controlled and scheduled with 
high degree of accuracy

• Wind plants becoming large 
enough to have measurable 
impact on system operating 
cost

• System operators concerned 
that additional variability 
introduced by wind plants will 
increase system operating cost



Emerging Study Best-Practices

• Start by quantifying physical impacts
• Divide the impacts by time scale

– Regulation
– Load following and imbalance
– Scheduling and unit commitment
– Capacity value

• Analyze cost impact of wind in context of 
entire system in each time scale
– Load variability
– Wind variability
– What is wind’s impact on total variability and cost?
– Allocation: recognize wind’s positive and negative 

impacts



Time Frames of Wind Impact
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• Typical U.S. terminology
– Regulation -- seconds to a 

few minutes -- similar to 
variations in customer 
demand

– Load-following -- tens of 
minutes to a few hours --
demand follows predictable 
patterns, wind less so

– Scheduling and commitment 
of generating units -- hours 
to several days -- wind 
forecasting capability?

– Capacity value (planning): 
based on reliability metric 
(ELCC=effective load 
carrying capability)
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Decomposition of Control Area Loads
• Control area load & generation can be decomposed 

into three parts:
– Base Load
– Load Following
– Regulation



Regulation & Load Following
 REGULATION LOAD FOLLOWING

Patterns Random, 
uncorrelated 

Largely correlated 

Generator control Requires AGC Manual 

Maximum swing 
(MW) 

Small 10 – 20 times more 

Ramp rate 
(MW/minute) 

5 – 10 times more Slow 

Sign changes 20 – 50 times more Few 

 



Impact of Variable Power Sources

• Power system is designed to handle 
tremendous variability in loads

• Wind adds to that variability
• System operator must balance 

loads=resources (within statistical 
tolerance)

• Key implication: It is not necessary or 
desirable to match wind’s 
movements on a 1-1 basis



Typical Objective of Integration 
Studies

• Determine the physical impact of wind on 
system operation across important time 
frames
– Regulation (a capacity service; AGC)
– Load following (ramp and energy components)
– Unit commitment (scheduling)
– Planning/capacity credit (same as capacity value)

• Use appropriate prices/costs to assess 
ancillary service cost impact of wind based on 
the measured physical impacts

• Not all studies focus on all time frames



Where Does Wind Data Come From?

• Meso-scale 
meteorological 
modeling that can “re-
create” the weather at 
any space and time

• Model is run for the 
period of study and 
must match load time 
period

• Wind plant output 
simulation and fit to 
actual production of 
existing plants

Ponnequin PeetzPonnequin Peetz

Minnesota: Xcel

Colorado: Xcel



Challenges of Actual Data

• Power Information 
(PI) system

• Data storage error
– Results from PI 

system data 
compression

• Old wind technology 
behavior does not 
reflect current-future 
performance



Comparison of Cost-Based
U.S. Operational Impact Studies
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Wind Capacity Value in the US

Found significant variation in ELCC: 4%, 15%, 25% and variation 
based on year

ELCCMinnesota 20% 
Study

May change to capacity factor, 4 p.m. -6 p.m., Jul (2.8%) 10%ERCOT

PSE will revisit the issue (lesser of 20% or 2/3 Jan C.F.)Peak PeriodPSE and Avista

33% (method not stated)PGE

4 p.m. -8 p.m. capacity factor during July (5%)Peak PeriodIdaho Power

Sequential Monte Carlo (20%). New Z-method 2006ELCCPacifiCorp

Monthly 4-hour window, medianPeak PeriodMAPP

Top 10% loads/month; 85th percentilePeak PeriodSPP

20% all sites in RMATSRule of thumbRMATS

Full ELCC study using 10-year data set; inaccuracies introduced by 
load forecasting algorithm. Average approximately 12.5%

ELCCCO PUC/Xcel

Offshore/onshore (40%/10%)ELCCGE/NYSERDA

Sequential Monte Carlo (26-34%)ELCCMN/DOC/Xcel

Jun-Aug HE 3 p.m. -7 p.m., capacity factor using 3-year rolling 
average (20%, fold in actual data when available)

Peak PeriodPJM

Rank bid evaluations for RPS (mid 20s); 3-year near-match capacity 
factor for peak period

ELCCCA/CEC

NoteMethodRegion/Utility



How Are Wind’s Impacts Calculated?



How is Regulation Impact Calculated?
• Based on actual high-

frequency (fast) system load 
data and wind data

• If wind data not available, 
use NREL high-resolution 
wind production data 
characteristics

• Impact of the wind variability 
is then compared to the load 
variability

• Preferred metric: ORNL 
regulation allocation 
approach

• Regulation cost impact of 
wind is based on physical 
impact and appropriate cost 
of regulation (market or 
internal)
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–Realistic calculation of wind 
plant output (linear scaling 
from single anemometer is 
incorrect)



How is Load Following Impact 
Calculated?

• Based on actual system 
load data

• …and wind data from 
same time period
– Meteorological simulation to 

capture realistic wind 
profile, typically 10-minute 
periods and multiple 
simulated/actual 
measurement towers

– Realistic calculation of wind 
plant output (linear scaling 
from single anemometer is 
incorrect)

• Wind variability added to 
existing system variability
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Implies no one-one backup 
for wind



How is Unit Commitment Impact 
Calculated?

• Requires a realistic system simulation for at 
least one year (more is better)

• Compare system costs with and without wind
• Use load and wind forecasts in the simulation
• Separate the impacts of variability from the 

impacts of uncertainty

Days

Unit
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How is Capacity Value Calculated?
• Uses similar data set as 

unit commitment 
modeling
– Generation capacities, 

forced outage data
– Hourly time-synchronized 

wind profile(s)
– Several years’ of data 

preferred
• Reliability model used to 

assess ELCC
• Wind capacity value is 

the increased load that 
wind can support at the 
same annual reliability as 
the no-wind case
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Wind Plant Capacity Credit Example
Reliability Curves With/Without Wind

1,132 ELCC With Wind1,087 ELCC Without Wind

Wind Plant ELCC = 45 MW



High-Penetration Cases

• Minnesota PUC: 15-25% wind 
penetration (based on energy)

• Idaho Power: about 30% (peak)
• Avista: 30% peak



Minnesota 20% Wind Study

• Objective: Calculate ancillary service 
cost and capacity value of 20% wind 
penetration (by energy)

• Study analyzed 15, 20, 25% case
• Wind Capacity 5,689 MW on system 

peak of 18,527 MW (25% energy case; 
30.7% capacity penetration)

• Connection with the MISO market





Imbalance Across MISO Footprint



5-Minute Load/Net Load Changes: 25% 
Wind Case: Within-hour movement 

handled within MN



Key Innovation: Use of Variable 
Operating Reserve Dependent on Wind 

Generation



Wind Impact on Operating Reserves



Wind Integration Costs



Recent Studies in the Northwest

• Avista Utilities: Up to 30% wind penetration 
(peak)

• Idaho Power: Up to about 30% wind 
penetration (peak)

• BPA: analytical work in progress; integration 
cost is consistent with others

• Potential follow-on work to the NW Wind 
Integration Action Plan (NWIAP) on regional 
basis

• Northwest Wind Integration Action Plan: 
http://www.nwcouncil.org/energy/Wind/Default.asp



Idaho Power

From Idaho Power Corp Wind Integration Study



Avista

From Avista Wind Integration Study: Kalich, UWIG



From Avista Wind Integration Study: Kalich, UWIG



California Intermittency Analysis Project (from GE 
Energy, CEC Workshop)



Other Recent Studies



Minnesota Dept. of Commerce/
Enernex Study Framework

• 2010 scenario of 1500 MW of 
wind in 10 GW peak load 
system (< 700 MW wind 
currently)

• WindLogics:10-minute power 
profiles from atmospheric 
modeling to capture 
geographic diversity

• Wind forecasting 
incorporated

• Extensive historic utility load 
and generator data available

• Monopoly market structure, 
no operating practice 
modification or change in 
conventional generation 
expansion plan



Minnesota Dept. of Commerce/
Enernex Study Results

• Incremental regulation due to 
wind 3σ = 8 MW

• Incremental intra-hour load 
following burden increased 1-2 
MW/min. (negligible cost)

• Hourly to daily wind variation 
and forecasting error impacts 
are largest costs

• Monthly total integration cost: 
$2-$11/MWh, with an average 
of $4.50/MWh

• Capacity Credit (ELCC) of 
26%

Ramp up 
requirement 
increased by 
wind

Ramp down 
requirement 
increased by 
wind

Completed September 2004 www.commerce.state.mn.us
(Industry Info and Services / Energy Utilities / Energy Policy / Wind Integration Study)



New York ISO and NYSERDA/
GE Energy Study

• 2008 scenario of 3300 MW of 
wind in 33-GW peak load 
system (< 200 MW wind 
currently)

• AWS Truewind: wind power 
profiles from atmospheric 
modeling to capture statewide 
diversity

• Competitive market structure:
- for ancillary services
- allows determination of generator and consumer payment impacts

• Transmission examined: no delivery issues
• Post-fault grid stability improved with modern turbines
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New York ISO and NYSERDA/
GE Energy Study Impacts

• Incremental regulation of 
36 MW due to wind

• No additional spinning 
reserve needed 

• Incremental intra-hour 
load following burden 
increased 1-2 MW/ 5 min. 

• Hourly ramp increased 
from 858 MW to 910 MW

• All increased needs can be met by existing NY resources and   
market processes

• Capacity credit (UCAP) of 10% average onshore and 36% 
offshore

• Significant system cost savings of $335- $455 million on     
assumed 2008 natural gas prices of $6.50-$6.80 /MMBTU.



New York ISO and NYSERDA/
GE Energy Study 

http://www.nyserda.org/publications/wind_integration_report.pdf

Forecasting and Price Impacts
• Day-ahead unit-commitment 

forecast error σ increased 
from 700-800 MW to 859-950 
MW

• Total system variable cost 
savings increases from $335 
million to $430 million when 
state of the art forecasting is 
considered in unit commitment 
($10.70/MWh of wind)

• Perfect forecasting increases 
savings an additional $25  
million
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Xcel Colorado/Enernex Study

• 10%, 15%, and 20%*  
penetration (wind nameplate 
to peak load) examined for ~7 
GW peak load

• Gas storage & nominations
– Gas imbalance
– Extra gas burn for reserves

• Gas price sensitivity
• Transmission constraints
• O&M increase for increased 

start/stops 
• Real-time market access

Ponnequin Peetz

* 20% case is currently underway



Xcel Colorado/Enernex Study

Penetration 
Level 10% 15% 

Hourly Analysis $2.26/MWh $3.32/MWh 

Regulation $0.20/MWh $0.20/MWh 

Gas Supply (1) $1.26/MWh $1.45/MWh 

Total $3.72/MWh $4.97/MWh 

 
(1) Costs includes the benefits of additional gas storage

Additional work is underway to analyze a 20% penetration case.

• Without use of  300 MW pumped hydro unit, costs at 10% 
would be $1.30/MWh higher



Gas Storage Benefits/Results
• Summer/winter arbitrage 

– Cost savings in filling in summer and 
withdrawing in winter

• Reduction in need for financial hedge (call option) 
– Because the price of the gas in the storage field 

is known, there is no need to financially hedge 
the market price of the gas 

Wind Penetration 10% 15% 

$/ MWH Gas Impact No Storage Benefits $2.17 $2.52 

$ / MWH Gas Impact With Storage Benefits $1.26 $1.45 

 



Methods 
Emerging Best Practices

• Capture system characteristics and response through 
operational simulations and modeling

• Capture wind deployment scenario geographic 
diversity through synchronized weather simulation

• Couple with actual historic utility load and load 
forecasts

• Use actual large wind farm power statistical data for 
short-term regulation and ramping

• Examine wind variation in combination with load 
variations

• Utilize wind forecasting best practice and combine 
wind forecast errors with load forecast errors

• Examine actual costs independent of tariff design 
structure



Stakeholder Review
Emerging Best Practices

• Technical review committee (TRC)
– Bring in at beginning of study
– Discuss assumptions, processes, methods, 

data
• Periodic TRC meetings with advance 

material for review
• Examples in Minnesota, Colorado, 

California, New Mexico, and interest by 
other states



Factors that Influence Integration Cost 
Results

• Wind penetration
• Balancing area size 

– Conventional generation mix
– Load aggregation benefits

• Wind resource geographic diversity
• Market-based or self-provided ancillary 

services
• Size of interconnected electricity 

markets



Conclusions and Insights
• Additional operational costs are moderate for 

penetrations at or above portfolio standard levels
• For large, diverse electric balancing areas, existing 

regulation and load following resources and/or 
markets are adequate, accompanying costs are low

• Unit commitment and scheduling costs tend to 
dominate

• State of the art forecasting can reduce costs
– majority of the value can be obtained with current state-of-

the-art forecasting
– additional incremental returns from increasingly accurate 

forecasts 
• Realistic studies are data intensive and require 

sophisticated modeling of wind resource and power 
system operations



• Data from PI (Power Information) system
– compression may artificially smooth high-resolution (fast) 

data
– Missing data correction algorithm introduced artificial ramps 

in wind data

• Complex system influences wind capacity value and 
integration cost
– Scheduled maintenance of conventional generation
– Hydro dispatch (needs more systematic work)
– Interchange schedules, markets

Conclusions and Insights
Data and Modeling Assumptions Matter



Some Remaining Issues 

• Higher wind penetration impacts
• Effect of mitigation strategies

– Balancing area consolidation and dynamic 
scheduling

– Complementary generation acquisition (power 
system design; quick-response generation) and 
interruptible/price responsive load

– Power system operations practices  and wind farm 
control/curtailment

– Hydro dispatch, pumped hydro, other storage and 
markets (plug-hybrid electric vehicles, hydrogen)

• Integration of wind forecasting and real time 
measurements into control room operations



In Process
(Enernex, WindLogics, Ariva, UWIG team)

• Xcel (MN) Renewable Development Fund: 
Control Room Integration of Wind
– Define, design, build and demonstrate a complete 

wind power forecasting system for use by Xcel 
system operators

– Optimize the way that wind forecast information is 
integrated into the control room environment

– R&D on defensive operating strategies: Value of 
off-site met towers, high wind warning system, 
rapid update cycle (RUC) model



• Smaller balancing authority  projects
– Sacramento Municipal Utility District: high 

penetration, investigate value of pumped 
hydro

– Public Service of New Mexico: limited 
conventional resources, high ramping 
wind, export and minimum load issues

– Grant County projects: integrate with 
constrained existing hydro

In Process

Indicates NREL Systems Integration Participation



In Process
• Xcel Colorado  20% wind scenario (based on 

wind capacity to peak)
• BPA/Northwest Wind Integration Forum
• Western Governors’ Clean and Diverse Energy 

Plan (CDEAC) recommendations and follow thru
– Increased participation in transmission studies (SWAT, 

NTAC/BPA, MISO, etc.)
• Interest by Northwestern Energy (MT) in 

integration study
• Southwest Public Service (not yet started)
• Northern Tier Transmission Group (discussion)
• Western Wind Integration Study



Increasing Attention in North America
• IEEE Power Engineering 
Society Magazine, 
November/December 2005
•Planning update in Nov/Dec 
2007
•Wind Power Coordinating 
Committee kickoff June 
2006, Montreal PES meeting
• Utility Wind Integration 
Group (UWIG): Operating 
Impacts and Integration 
Studies User Group
• www.uwig.org



New Study 
Western Wind Integration Study 



Wind resources

Loads

Western Wind Integration Study



Questions to address

• Is it cheaper to use local wind resources or import better class resources 
from out-of-state?

• How do out-of-state resources compare to local wind resources for matching 
load profiles? Does geographical diversity help reduce system variability?

• What are the benefits from long distance transmission that accesses multiple 
wind resources that are geographically diverse?

• Can the required transmission costs be covered by wind or other future 
generation sources?

• What additional aggregate system operational impacts or costs are imposed 
by wind variability? What kinds of mitigation measures help to manage that 
incremental variability? 

• How does hydro help with wind integration?
• What is the role and value of wind forecasting?
• What benefit does Balancing Area cooperation or consolidation bring to wind 

variability management? 
• Is there a benefit to aggregating regional wind demand instead of individual 

utility action?
• How does each wind area contribute to reliability and capacity value?



Key Tasks
• Stakeholder group
• Technical review committee
• Meso-scale modeling of wind 
• Preliminary analysis

– Examine load and wind profiles
– Preliminary control area consolidation analysis
– Build wind/transmission supply curves

• Design scenarios 
• Evaluate scenarios for cost and operational impacts

– Production Simulation Analysis
– Evaluate physical performance and limitations of power grid
– Evaluate economic/financial performance

• Evaluate mitigation measures
– Operational strategies
– Technology options




