NREL Parking Garage Performance Review:
Achieving 90% Energy Savings in a Parking Structure

Shanti Pless
NREL Commercial Buildings Research Group

March 28, 2013
Design Solution—Metrics for Performance

• **Parking Spaces**
 o 1,806 total spaces
 o 90 preferred spaces for carpooling and vanpooling, 90 preferred spaces for low-emitting vehicles, 36 electric vehicle charging stations

• **Renewable Energy Ready**
 o 1.13 MW PV (net zero energy for RSF complex)

• **Energy Performance**
 o 158 kBtu/space/yr, designed
 o 90% energy reduction versus ASHRAE Standard 90.1-2007

• **Lighting and Daylighting are the key strategies to ensure successful performance**
Design Solution—Structure

Elevation:
Aluminum perforated panels optimized by daylight model
• 40% openness
• North, east, and west positioning

Top floor PV roof, Jennifer Scheib, NREL
Design Solution—Structure

Interiors:

• Light concrete but no paint on ceiling or columns
• Slab and beam versus flat slab
Design Solution—Structure

Interiors: Atrium staircase leading to bus shelter

Atrium and bus shelter, Dennis Schroeder, NREL
Design Solution—Systems

- **0.05 W/ft² LPD**

 CBEA specification was used for reference when reviewing lighting fixture submittals

- **Lights are only on when needed**
 - Occupancy sensors (OS)
 - Photocells (PS)
Design Solution—Systems

Light well images, Dennis Schroeder, NREL
Design Solution—Systems

Light well, Dennis Schroeder, NREL
Energy Performance

Predicted versus Measured, Summer 2012

Predicted Energy Use (kBtu/space/yr, %) by End Use
- Miscellaneous, 41.2, 26%
- Elevators, 24.5, 16%
- Security, 46.3, 29%
- Lighting, 46, 29%

Actual Energy Use (%) by End Use
- Miscellaneous, 37%
- Elevators, 24.5, 16%
- Security/Elevator, 37%
Lighting Energy Performance Last 48 Hours
EVCS Energy Performance Last 48 Hours
Getting it all to work

• Ensure photocells are placed appropriately
 o Hard to control to 1 FC...
 o A single global photocell with local zone configuration is now our preferred method

• Be prepared to fine tune occupancy controls
 o 30 seconds to 50%, 2 minutes to off works well
 o Do occupancy sensors sense the right things?
 – Full coverage?
 – Sensor shields to minimize false ON
Discussion About Innovation and Replication

• **Process innovation**
 - Use performance-based procurement (energy goal with performance incentives)
 - Require integrated design with energy modeling, starting in the predesign phase, to maximize efficiency feature early

• **Design innovation**
 - Focus on structure first (structure type, perimeter configuration to maximize high daylight, bay width, structure depth, finishes, colors, percent fly ash)
 - Achieve a low LPD with good nighttime cutoff
 - Implement a lighting control scheme that improves occupant experience in terms of aesthetics and safety
 - Reduce need or time of use for elevators, heat trace, ventilation, miscellaneous loads

• **Result:** Cost-competitive, energy-efficient, *beautiful* garage with carefully considered neighborhood interface
Resources Available at: www.nrel.gov/sustainable_nrel/buildings_garage.html

- Low-Energy Parking Structure Design Guide
- DOE High-Efficiency Parking Structure Lighting Specification
- Energy-Goal-Based Building Procurement Webinar: Achieving 90% Energy Savings in a Parking Structure
- NREL Parking Garage Fact Sheet:
- NREL Feature News Story
Thank you for your time

Questions?
And then the tour!

Shanti Pless: shanti.pless@nrel.gov