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The technical approach to this project is to utilize mass spectrometry to measure radical and ion species that arrive at the substrate of a plasma-enhanced-chemical-vapor-deposition (PECVD) reactor. Threshold ionization mass spectrometry (TIMS) is utilized for the radical detection. A small-scale reactor mimics those used to produce hydrogenated amorphous (a-Si:H) and microcrystalline ((c-Si) silicon and silicon/germanium (a-Si:Ge:H) solar cells. Radio frequency (RF) and high frequency (HF) discharges will normally be studied, and the reactor utilizes a similar electrode gap (2-3 cm), substrate temperature (20-250 (C), gas pressures (0.1-5 Torr), gas mixtures and discharge power density to that used in an industrial reactor. 

In the last report, we discussed how the designed ion-collection and mass-spectrometer behavior was achieved. Here we describe film-growth measurements in our film-deposition reactor. Most industrial and experimental reactors measure the ratio (R) of H2 versus SiH4 flows, the reactor chamber pressure (PCh) and the power (PTot) delivered to a matching network that is connected to the discharge RF electrode. Since only 10-20% of PTot is typically dissipated in the discharge, and this fraction is generally not known or controlled, it is difficult to relate the conditions of different reactors. The film growth rate (G) is also measured by device manufacturers and developers, and as G is a monotonic function of power delivered to the discharge we use it to characterize the power conditions. The RF voltage (VRF) applied to the discharge is easy to measure, and is also monotonically related to the discharge power, so we measure G versus R, PCh and VRF to relate our conditions to those of device makers. In essence, similar conditions exist in different reactors when the values of G, R and PCh are the same. There are actually several additional variables that these parameters do not provide. One is the silane depletion in the reactor. The actual R value of the gas mixture depends on this depletion, and can become much higher than the inlet H2/SiH4 flow ratio. Furthermore, disilane builds up in the chamber, and can be important. Sometimes it is possible to estimate this depletion from G, if the gas flows are well confined to the reactor volume. A second variable is the electrode gap, so we utilize a 2.0 cm gap, which is in the middle of the range used for in many reactors. Two additional variables are the temperatures of the substrate (TSub) and the RF electrode (TRF). While TSub is normally measured and reported, TSub -TRF can also be important and is normally not known.

An overview of the experimental arrangement is provided in Fig. 1. The film-thickness measurement is done with the laser setup shown in the lower left corner of this diagram. In essence, reflection fringes provide the film thickness, and the rate of change in a fringe yields the film growth rate. The film-growth rate data, for a range of conditions, is shown in Figs. 2 and 3. These measurements were carried out with the entire discharge chamber at 300K. Primarily the vapor densities influence the discharge behavior, so for an isothermal chamber at the typical operating temperature of 500 K, the pressures should be multiplied by 5/3.
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Fig.1. Overview of the apparatus used to study radicals at the discharge substrate, and the film growth rate. The RF-to-substrate electrode gap is 2.0 cm. 
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Fig.2. Film growth rate (G), versus VRF and PTot, for R = 16 and 36.
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Fig.3. Film growth rate with pure silane inlet flow, versus pressure and VRF. The silane depletion is 15% at 0.35 nm/s film growth rate.

Comparing Figs. 2 and 3, one can see that diluting the silane to R = 16 does not have a major influence on G, at least for PTot = 1.5 and 2.0 Torr. The silane pressure is ~0.1 Torr for these cases, which are “on the edge” of producing microcrystalline films. However, diluting further to R = 36 reduces G by a factor of 5-10. Here the hydrogen etching is seriously competing with silicon deposition, and microcrystalline films are being produced.  This reduction in G can be partly compensated by increasing VRF, but this is accompanied by an increase in ion bombardment energies.
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