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1. Introduction 

Eutectic Sn-Pb solder joints have been widely studied in the 
microelectronics industry.  On cooling after reflow and with 
cyclic thermo-mechanical fatigue, solder joints are known to 
undergo spinodal decomposition, intermetallic grain 
growth, Kirkendall void growth, micro-crack and macro-
crack formation, and other processes [1]. 
Our objective is to demonstrate whether these processes 
affect the thermal and reliability properties of a 3JPV solder 

2. Method 

Multi-junction photovoltaic cells (MJPV) convert concentrated sunlight to electrical 
power with efficiencies approaching 50%.  MJPV cells can also be operated as a self-
thermometer and a self-heater, without added structure or componentry, which 
enables auto-calorimetry using only a programmable source-monitor unit (SMU). 
Thermal transients can be introduced into the cell using the self-heater, and the 
device response can be followed using junction temperature Tj.  Thermal transient 2.65 

2.6 response is informative regarding the state and evolution of materials and structures 
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in the cell [4,5].  Transient response is found to change in different ways, after hot and 2.5 
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Fig. 5: Information parameter 'T definition. Segment 2  

Fig. 1: Microstructure of aged Sn-Pb solder on AuPtPd metal.  [1] 
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Previous work in this program [2] used a high-concentration 
solar simulator to develop cyclic thermal transients of 0.4
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 approximately 65K for 8 seconds in 3JPV cells, but device 
failure was not seen after 7,000 cycles. 
Solder joint failure has been induced using conventional oven 
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cycled stress [3], where 1,000–2,000 cycles at ramp rates of 0 
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Thermal shock events7.5 to 140K/min were used. 
Fig. 2: TETRA three-segment scan. Fig. 6: Energy dose uniformity. 
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Fig. 7: Segment 3 transient suggests several time constants, Fig. 9: Substrate curvature and test stage effects – (a) Fig. 10: Mass sensitivity (5 samples) – (a) raw data; Fig. 11: Finite–element modeling Segments 
and test stage effect. metal stage; (b) polymer foam stage. (b) normalized to sample mass. 2 & 3, on metal stage (COMSOL). 
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