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Goals and Motivations Approaches

* Predict moisture ingress into PV modules during long-term outdoor -+ Water ingress is modeled with 2D Finite Elements Method (FEM) as a

exposure, identifying impact of climate conditions and encapsulation diffusion problem and simulated for:
scheme > three different climatic conditions
- Improve modules life-time by better understanding water-related » two different encapsulation schemes.

degradation mechanisms (e.g. delamination [1,2], potential induced

_ * A new monitoring technique is then employed to measure the relative
degradation (PID) [3])

humidity inside the PV modules and validate the simulation model.

Water ingress modeling

Simulations model Glass/Glass: 3 climates, 20 yrs
045 v Cool & Humid Tropical Desert
o] G/G - 20 YEARS, NEUCHATEL (CH) G/G - 20 YEARS, MUMBAI (IN) G/G - 20 YEARS , SHARURAH (SA)
- —Edge —B1 —B2 —Edge —B1 —B2 —Edge —B1 —B2
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- Water ingress in PV module materials %22 Ezz %;Z
described by Fick's Second Law of Diffusion: = 1 = 1o 2
dc(x, t) 9%c(x,t) L.Z_j 1.0 % 1.0 VVV = 1.0
ot - D(t) 6x2 § 0.5 § 0.5 / % 0.5 rmwwwmw
« Solved by FEM with experimentally determined s 00 i . . o B i . . . EOO O/ i . . .
water diffusion coefficient D and solubility S of = TIME [YEARS] = TIME [YEARS] = TIME [VEARS]
EVA and backsheet
- Water concentration at the outer surface Observations
. , . Glass/Backsheet: 1 climate, 1 yr
calculated with Henry's law: Y as expected: fastest moisture ingress in tropical climate (high
Csurr(t) = S(t) * Pu,o (1) G/BS - 1 YEAR , NEUCHATEL (CH) temperature and high relative humidity), with clear seasonal
« 2-D geometry assuming infinite length in the 31 - —Edge —B1 —F1 variations, particularly at the edge
dimension 230 * @G/G reduces moisture accumulation with respect to G/BS
. Symmetries (dotted lines) exploited to reduce g 25 (moisture content at cell back already larger in G/BS after 1st
S 2.0 :
computational times, with Glass/Glass (G/G) = 1s year than in G/G afterIZQ years). N
scheme also vertically symmetric Z 1.0 * In G/BS, seasonal variations clearly visible at the cell back
. Modules assumed initially dry Z 05 (increase in water concentration during cold and humid winter).
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« @G/BS simulations must now be extended to longer time-scales,

« QOutput: time-evolution of water concentration in A 6 g 10 12

different positions in the module (edge, front, TIME [MONTHS] such as in [4].
back)
New monitoring technique:
Encapsulated relative humidity sensors
Working principle Simulations vs Measurements
* Miniature digital relative humidity (RH) _
and temperature (T) sensors were Cool & Humid (Glass/Backsheet)
soldered on a Printed Circuit Board G/BS - NEUCHATEL (CH)
PCB strip Sensors: (PCB) strip. | | | —Embedded sensor measurement —Simulated values
(0.5 mm thickness) T and RH The PCB strip was then laminated in —. 100
G/G and G/BS samples. S 90
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Measuring water concentration inside PV modules = 60 AN ,g~~~ ” ,? g'% \3 8
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» The technique has been preliminarily tested in climatic chamber w ‘3‘8 | | o
— care must be taken when sensor operates outside its normal specified % 20 Time-evolution of RH inside a
range w10 G/BS sample in outdoor
0 conditions (cool & humid

Samples were then installed outdoor to track evolution of internal RH. 0 2 4 6 8 10 12 14 16 18 20 22 24  climate) as measured by a

TIME [DAYS] sensor and simulated by FEM

First results: Good agreement between measurement and simulation

Conclusions/Outlook

-  Water concentration inside PV modules was simulated for different climates and encapsulation schemes:
» As expected, tropical climate induces fastest water ingress, however cool & humid climate also features high water content after 20 years
»> @G/BS after 1 year already shows higher water content than G/G after 20 years

 For G/BS, good agreement between simulated results and outdoor monitoring. But further (ongoing) experiments required, also in climatic
chambers.

- Optimized choice for encapsulant materials, and in-depth investigation of moisture-related failure modes (e.g. delamination, PID) can be
performed based on this analysis.
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