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ABSTRACT

We show results from a number of experimental and
theoretical investigations on GaInNAs in an attempt to
provide a more complete picture of defects in this material
than is currently available.  Much has been learned in
recent years, including the effects of impurities such as
hydrogen and carbon, the behavior of GaInNAs on
annealing, and the defects that cause a degradation of
material properties, including photoluminescence intensity
and, especially important for solar cells, minority-carrier
lifetimes.

Much of our current understanding stems from a
comparison of GaInNAs grown by both MOCVD and
MBE.  This comparison, along with the use of several
characterization techniques and theoretical modeling, has
allowed us to understand the roles of various defects and to
identify a signature for the defect that reduces the minority-
carrier lifetime.

1. Introduction
Monolithic, three-junction GaInP2/GaAs/Ge solar cells

are currently in production.  This device, however, cannot
make efficient use of all of the light that reaches the Ge
junction.  A four-junction device that splits the sub-GaAs
light between the Ge cell and a cell with a bandgap near 1
eV has an ideal, theoretical efficiency of 52% under 500-
suns concentration and the AM1.5D spectrum.  This should
lead to a practical efficiency of greater than 40%.

The material used as the active layer for this new cell
must be lattice-matched to GaAs and have a bandgap of
approximately 1 eV.  Ga1-xInxNyAs1-y, hereafter GaInNAs,
has both of these properties when y~2.5% and x~7%, but
suffers from low minority-carrier diffusion lengths.
Insertion of this material into the three-junction cell would
fall short of the “breakeven” efficiency of currently
available technology [1].

The literature on GaInNAs shows that this material is
replete with defects that cause a number of serious
problems.  For example, studies using deep-level transient
spectroscopy (DLTS) measurements often show as many as
five or six deep states in the bandgap.  This makes the task
of identifying the roles of these defects nearly impossible.
Even something as seemingly straightforward as the
background carrier concentration is not very well
understood.  As grown, unintentionally doped GaInNAs is

usually p-type, although it can sometimes be n-type.
Further confusing matters is the fact that annealing
GaInNAs can take p-type material and cause it to become
more p-type, or change it to n-type [2,3].

Among the serious issues in this material is the
extremely low minority-carrier lifetime, typically less than
1 ns.  This lifetime in GaInNAs is 50–100 times lower than
in comparable GaAs.  In addition, there are also drastic
decreases in both the electron mobility and the
photoluminescence intensity when compared to similarly
grown GaAs.  Clearly, the reduced lifetimes are due to
some point defect in the crystal, owing to the overall lack
of extended defects.  However, almost nothing is known
for certain of the nature of this defect.

In this work, we use a number of experimental studies
and theoretical calculations to attempt to clarify the roles of
the various defects, including hydrogen, carbon, and
gallium vacancies.  We also identify a signature of the
defect that limits the minority-carrier lifetimes.

2. Procedures
GaInNAs epilayers are grown on GaAs substrates by

both metalorganic chemical vapor deposition (MOCVD)
and molecular-beam epitaxy (MBE).  The growth
conditions for each method are given explicitly in each
published work referenced in this paper.  Briefly, MOCVD
uses metalorganic and hydride precursors that react on the
heated substrate.  In contrast, MBE uses elemental sources
and an ultrahigh vacuum environment.  Substrate
temperatures in MOCVD growth are somewhat higher than
in MBE: in the range of 550°–650°C for MOCVD and
450°–530°C for MBE.

Samples with specific structures are often necessary
for certain characterizations to be performed.  These are
described in detail, along with a more complete description
of the growth details, in the appropriate referenced
publications.

3. Results
a. DLTS measurements
Deep-level transient spectroscopy (DLTS)

measurements have provided a great deal of insight into the
defect structure of GaInNAs.  There are always at least two
deep levels observed in our GaInNAs epilayers, and often
there are only these two deep levels, compared with the
five or six observed in the literature.  Additional levels are
seen in certain samples, but since these are not ubiquitous,
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they cannot be the major cause of the poor properties of
this material [4]. Of the two universal deep traps, one is a
relatively shallow electron trap, and the other is a mid-gap
state that traps both holes and electrons, forming a
recombination center [5].

The activation energies of these two defect states
change with changing nitrogen concentration, [N], as
shown in Fig. 1.  The electron trap appears at about 1.0 eV
above the valence-band maximum (VBM) for samples with
a small amount of nitrogen, and this activation energy
decreases only slightly (about 0.1 eV) for samples with a
bandgap near 1 eV.  As the amount of nitrogen in GaInNAs
increases, there is a corresponding decrease in the bandgap
of the sample [6]. Because most of the motion of the
bandgap is due to the lowering of the conduction-band
minimum (CBM), the electron trap quickly approaches the
CBM as [N] is increased.  This motion makes the
activation energy of the electron trap quite shallow for 1 eV
GaInNAs, on the order of 0.1 eV.  The recombination
center, however, mirrors the motion of the CBM.  This
defect has an activation energy of ~0.9 eV for low [N] that
drops to ~0.5 eV for high [N].  In this way, the
recombination center maintains a position near the middle
of the bandgap [5].

It is known that deep traps typically have a stronger
influence on the minority-carrier lifetimes than do shallow
traps.  The recombination rate for traps near midgap is
several orders of magnitude higher than for traps closer to
the bands [7].  In addition, a defect that traps both holes
and electrons provides a pathway for recombination that is
not directly band-to-band.  This allows us to conclude that
the deep recombination center observed in the DLTS

measurements is a signature of the defect limiting the
minority-carrier lifetimes.  Further work is necessary to
identify the origin of this defect and to eliminate it.

b. Comparison of MBE- and MOCVD-grown
GaInNAs

A material grown by disparate growth methods will
often show differences in properties such as defect
structure and background impurity levels.  It was hoped
that by comparing MBE- and MOCVD-grown GaInNAs
that some differences would be observed that would shed
light on the difficulties with GaInNAs.  Studies of the
mobility, minority-carrier lifetime, and deep-level defect
structure yielded no major distinctions.  Only two
important differences were found in material from the two
growth methods: photoluminescence (PL) intensity of the
as-grown material and residual background impurity
concentrations [4].  The different impurity levels also led to
differences in the acceptor concentrations.  The as-grown
material from the MBE system was found to show
significant room-temperature luminescence, whereas the
PL from MOCVD-grown samples was very weak, if
present at all.  In addition, the MBE-grown material
exhibited much lower concentrations of both hydrogen and
carbon.

It is well known from the literature that annealing
improves the PL efficiency of GaInNAs [8]. This is
certainly the case for our MOCVD-grown material, where
very low PL is observed before annealing, and significant
luminescence, although far less than comparable GaAs, is
observed after annealing.  The MBE-grown material, in
contrast, does show as-grown PL and a relatively small
increase on annealing, although the PL intensity of this
material is also far lower than that of GaAs.  This
discussion will become important in a later section.

The differences in hydrogen and carbon impurities are
expected from the nature of the growth methods.  MOCVD
uses organic and hydride precursors, and carbon and
hydrogen contamination is expected and extremely difficult
to mitigate under the growth conditions that allow
incorporation of nitrogen.  MBE, however, uses elemental
sources in an ultrahigh vacuum environment that
drastically reduces the background impurities incorporated
during growth.  Typical hydrogen and carbon
concentrations from MOCVD material are in the range of
1x1018–1x1020 cm-3 and 5x1016–1x1018 cm-3, respectively.
The background of the secondary-ion mass spectrometry
measurements limited the detection of impurity
concentrations in MBE-grown GaInNAs.  The levels were
no higher than 6x1016 cm-3 for hydrogen and 4x1014 cm-3

for carbon [4].
Because material with such drastically different

impurity concentrations had such similar mobilities,
lifetimes, and deep-level defect structures, it is clear that
neither hydrogen nor carbon are a major factor in these
properties.  However, carbon contamination appears to
contribute to the high background acceptor concentration
observed in MOCVD GaInNAs [9].  In addition, there is
evidence that carbon, in sufficient concentrations, can form
a deep level when paired with nitrogen [10].  Hydrogen
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Figure 1.  The activation energy of the electron trap
(open circles) and the recombination center (filled
circles) as measured from the VBM for samples with
different amounts of nitrogen.
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almost certainly contributes to the carrier concentration in
its own way, as seen in the next section.

c. The role of hydrogen
Theoretical calculations have helped to illuminate

some additional effects of hydrogen in GaNAs.  Nitrogen
and hydrogen are expected to form a strong bond in this
material, and this was verified by both theoretical
calculations and experimental studies [11,12]. Indeed, the
N-H defect was shown to act as a donor.  This result is
surprising because H is amphoteric in both GaAs and GaN,
causing passivation rather than doping.  These calculations
indicate that the change of p-type GaInNAs to n-type on
annealing under AsH3 is, at least in part, related to
hydrogen in the sample.

In addition, nitrogen and hydrogen were both found to
bond very strongly with gallium vacancies (VG a) ,
significantly reducing the formation energy of this intrinsic
defect [13].  The resulting N-H-VG a complex has a
formation energy that is about 2 eV lower than for the
isolated VGa in GaAs, as seen in Fig. 2.  This raises the
expected concentration of VGa in GaNAs well beyond the
levels expected in GaAs when hydrogen is present.  This
result allows us to infer that material grown by MBE will
have a far lower concentration of VGa, due to the lack of
hydrogen, than layers from the MOCVD system.  This
potentially has two consequences: the VGa complex acts as
an acceptor and may be a significant contributor to the

elevated background acceptor concentrations observed in
MOCVD-grown GaInNAs, and the removal of VGa on
annealing may be responsible for the improvement seen in
PL intensity.

Recall that very weak room-temperature PL is
observed from our as-grown MOCVD GaInNAs, whereas
the MBE-grown samples do show significant
luminescence.  On annealing, the PL from the MOCVD-
grown material increases dramatically, and a small increase
in PL intensity is seen from the MBE-grown samples.  For
VGa to be involved in this phenomenon, two things must
occur: there must be fewer VGa in as-grown MBE samples,
and annealing must reduce the concentration of VGa in the
MOCVD-grown material.  This is the focus of the next
section.

d. Positron annihilation spectroscopy
Positron annihilation spectroscopy (PAS) is a

technique that is used to determine the concentration of
open volume defects (OVD) in a crystal.  OVDs are
typically assumed to be related to vacancies.  In
collaboration with researchers at Washington State
University, PAS was performed on a number of our
MOCVD- and MBE-grown GaInNAs samples, as well as
GaAs reference samples.  Figure 3 shows the ratio of the S
parameter in these samples to the S parameter of a bulk
GaAs substrate versus the implantation depth of positrons
into the samples.  The S parameter is related to the
concentration of vacancies.  Neither the MBE- nor
MOCVD-grown GaAs samples showed any OVD signal
above that of the bulk GaAs reference sample.  Figure 3a
indicates that the MBE-grown GaInNAs sample did not
show any OVD signal above background, but GaInNAs
grown in the MBE system under an intentional flux of
atomic hydrogen did show OVDs.  The as-grown MOCVD
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Figure 3.  PAS measurements showing (a) the increase in
VG a  for MBE growth under H, and (b) the large
concentration of VGa in MOCVD material that is somewhat
reduced by annealing.

Figure 2. Formation energy vs. Fermi energy for VGa
3-

and (H-VGa)
2- in GaAs, and for the same defects

bonded to N, (N-VGa)
3- and (N-H-VGa)

2-, in dilute
GaAsN alloys under Ga-rich and H-rich conditions. In
the inset we show the local atomic configuration for
the (N-H-VGa)

2-complex.
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Table I.  Summary of the defects in GaInNAs, including cause, signature, and possibility of removal.
Defect Cause Signature Can we remove?
carbon MOCVD growth acceptors, reduced lifetime by using MBE (acceptors)

hydrogen MOCVD growth donor by using MBE
gallium vacancies, VGa presence of H and N acceptors, reduced PL, PAS probably, by using MBE
shallow electron trap N(?) DLTS ??
deep recomb. center N(?) DLTS, reduced lifetime ??

GaInNAs sample shown in Fig. 3b (blue curve), however,
showed the largest concentration of OVDs, and this level
was reduced in a similar sample that was annealed at
650°C for 30 minutes. It should be noted that the topmost
100–200 nm of each measurement is within the passivating
cap layer.  Differences in the OVD signal from the
different cap layers are fully expected.  These data fit
perfectly with the theoretical calculations described above,
and indicate that there are, indeed, fewer VGa in MBE-
grown GaInNAs and that their concentration in MOCVD-
grown material is reduced with an anneal.  These findings
lend support to the idea that the VGa defect may well be
involved in the suppression of the PL intensity.

4. Conclusion
We have attempted to describe the roles of various

defects in GaInNAs, and our findings are summarized in
Table I.  By comparing material grown by both MBE and
MOCVD, we have shown that hydrogen, carbon, and VGa

cannot be the major cause of degradation in this material,
although each has its own effect.  Carbon contributes to the
background hole concentration, and may form a deep level
when combined with nitrogen whereas hydrogen acts as a
donor.  The incorporation of hydrogen in GaInNAs
increases the concentration of VGa to very high levels.
These VGa are likely responsible for at least some of the
suppression of the PL intensity and may also act as
acceptors that affect the background carrier concentration.

In addition, we have identified a peak in DLTS
measurements that represents the defect limiting the
minority-carrier lifetimes.  The structure of this defect is
still not known, and much work remains to see if it can be
removed.  However, this represents a large step forward as
this signature can now be used as a figure of merit for
future studies of GaInNAs.
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